OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
5th Edition
ISBN: 9781285460420
Author: John W. Moore; Conrad L. Stanitski
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 53QRT
Interpretation Introduction
Interpretation:
Partial pressure of
Concept Introduction:
Boyle’s law:
At fixed temperature and number of molecules, the volume of a fixed amount of gas is inversely proportional to the pressure exerted by the gas.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A piece of magnesium reacts with an aqueous solution of HCl to produce H2 gas. The hydrogen gas is collected over the HCl solution at a temperature of 22.0°C. If the total pressure of the system is 0.957 atm, and the volume of gas collected is 710. mL, what are the partial pressure and the mass of H2 produced? (You may assume that the dissolved HCl has no effect on the vapor pressure of water, which is 19.8 torr at 22.0°C.)
partial pressure
Mass
A piece of magnesium reacts with an aqueous solution of HCl to produce H2 gas. The hydrogen gas is collected over the HCl solution at a temperature of 22.0°C. If the total pressure of the system is 0.965 atm, and the volume of gas collected is 780. mL, what are the partial pressure and the mass of H2 produced? (You may assume that the dissolved HCl has no effect on the vapor pressure of water, which is 19.8 torr at 22.0°C.)
A 4.00 L flask contains 1.40 atm argon at 25°C.
a) Calculate the moles of argon gas initially present in the flask.
b) 20 mol Cl2 is added to the flask and the total pressure of gas changes. Explain the molecular-level reasons for this pressure change.
c) Using your knowledge of gases and intermolecular forces, predict (and explain) whether the argon or the chlorine would behave more like an ideal gas.
Chapter 8 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
Ch. 8.1 - Prob. 8.1PSPCh. 8.1 - Prob. 8.1ECh. 8.1 - Prob. 8.2ECh. 8.2 - Prob. 8.3CECh. 8.2 - Prob. 8.4CECh. 8.3 - Prob. 8.6CECh. 8.3 - Prob. 8.2PSPCh. 8.3 - Prob. 8.3PSPCh. 8.3 - Prob. 8.4PSPCh. 8.3 - Prob. 8.7CE
Ch. 8.4 - Prob. 8.5PSPCh. 8.4 - Prob. 8.8CECh. 8.4 - Prob. 8.9CECh. 8.4 - Prob. 8.6PSPCh. 8.4 - Prob. 8.10CECh. 8.5 - Prob. 8.7PSPCh. 8.5 - Prob. 8.8PSPCh. 8.5 - Prob. 8.11ECh. 8.6 - Prob. 8.9PSPCh. 8.6 - Prob. 8.12CECh. 8.6 - Prob. 8.13ECh. 8.6 - Prob. 8.10PSPCh. 8.6 - Prob. 8.11PSPCh. 8.7 - Prob. 8.12PSPCh. 8.7 - Prob. 8.14ECh. 8.7 - Prob. 8.16CECh. 8.7 - Prob. 8.17ECh. 8.8 - Prob. 8.13PSPCh. 8.8 - Prob. 8.18ECh. 8.8 - Look up the van der Waals constants, b, for H2,...Ch. 8.11 - List as many natural sources of CO2 as you can,...Ch. 8.11 - Prob. 8.21ECh. 8.11 - Prob. 8.22CECh. 8.11 - Prob. 8.23CECh. 8.11 - Prob. 8.24CECh. 8.12 - Make these conversions for atmospheric...Ch. 8.12 - Prob. 8.25ECh. 8 - In a typical automobile engine, a gasoline...Ch. 8 - Prob. 1QRTCh. 8 - Prob. 2QRTCh. 8 - Prob. 3QRTCh. 8 - Prob. 4QRTCh. 8 - Prob. 5QRTCh. 8 - Prob. 6QRTCh. 8 - Prob. 7QRTCh. 8 - Prob. 8QRTCh. 8 - Prob. 9QRTCh. 8 - Prob. 10QRTCh. 8 - Prob. 11QRTCh. 8 - Prob. 12QRTCh. 8 - Prob. 13QRTCh. 8 - Prob. 14QRTCh. 8 - Prob. 15QRTCh. 8 - Prob. 16QRTCh. 8 - Prob. 17QRTCh. 8 - Prob. 18QRTCh. 8 - Some butane, the fuel used in backyard grills, is...Ch. 8 - Prob. 20QRTCh. 8 - Suppose you have a sample of CO2 in a gas-tight...Ch. 8 - Prob. 22QRTCh. 8 - Prob. 23QRTCh. 8 - Prob. 24QRTCh. 8 - A sample of gas occupies 754 mL at 22 C and a...Ch. 8 - Prob. 26QRTCh. 8 - Prob. 27QRTCh. 8 - Prob. 28QRTCh. 8 - Prob. 29QRTCh. 8 - Prob. 30QRTCh. 8 - Prob. 31QRTCh. 8 - Prob. 32QRTCh. 8 - Calculate the molar mass of a gas that has a...Ch. 8 - Prob. 34QRTCh. 8 - Prob. 35QRTCh. 8 - Prob. 36QRTCh. 8 - Prob. 37QRTCh. 8 - Prob. 38QRTCh. 8 - Prob. 39QRTCh. 8 - Prob. 40QRTCh. 8 - Prob. 41QRTCh. 8 - Prob. 42QRTCh. 8 - Prob. 43QRTCh. 8 - Prob. 44QRTCh. 8 - Prob. 45QRTCh. 8 - Prob. 46QRTCh. 8 - Prob. 47QRTCh. 8 - Prob. 48QRTCh. 8 - The build-up of excess carbon dioxide in the air...Ch. 8 - Prob. 50QRTCh. 8 - Prob. 51QRTCh. 8 - Prob. 52QRTCh. 8 - Prob. 53QRTCh. 8 - Prob. 54QRTCh. 8 - Prob. 55QRTCh. 8 - Benzene has acute health effects. For example, it...Ch. 8 - The mean fraction by mass of water vapor and cloud...Ch. 8 - Acetylene can be made by reacting calcium carbide...Ch. 8 - Prob. 59QRTCh. 8 - You are given two flasks of equal volume. Flask A...Ch. 8 - Prob. 61QRTCh. 8 - Prob. 62QRTCh. 8 - Prob. 63QRTCh. 8 - Prob. 64QRTCh. 8 - Prob. 65QRTCh. 8 - Prob. 66QRTCh. 8 - Prob. 67QRTCh. 8 - Prob. 68QRTCh. 8 - Prob. 69QRTCh. 8 - Prob. 70QRTCh. 8 - Prob. 71QRTCh. 8 - Prob. 72QRTCh. 8 - Prob. 73QRTCh. 8 - Prob. 74QRTCh. 8 - Prob. 75QRTCh. 8 - Prob. 76QRTCh. 8 - Prob. 77QRTCh. 8 - Prob. 78QRTCh. 8 - Prob. 79QRTCh. 8 - Prob. 80QRTCh. 8 - Prob. 81QRTCh. 8 - Prob. 82QRTCh. 8 - Prob. 83QRTCh. 8 - Prob. 84QRTCh. 8 - Prob. 85QRTCh. 8 - Name a favorable effect of the global increase of...Ch. 8 - Prob. 87QRTCh. 8 - Assume that limestone, CaCO3, is used to remove...Ch. 8 - Prob. 89QRTCh. 8 - Prob. 90QRTCh. 8 - Prob. 91QRTCh. 8 - Prob. 92QRTCh. 8 - Prob. 93QRTCh. 8 - Prob. 94QRTCh. 8 - Prob. 95QRTCh. 8 - Prob. 96QRTCh. 8 - Prob. 97QRTCh. 8 - Prob. 98QRTCh. 8 - Prob. 99QRTCh. 8 - Prob. 100QRTCh. 8 - Prob. 101QRTCh. 8 - Prob. 102QRTCh. 8 - Prob. 103QRTCh. 8 - Prob. 104QRTCh. 8 - Prob. 105QRTCh. 8 - Prob. 106QRTCh. 8 - Prob. 107QRTCh. 8 - Prob. 108QRTCh. 8 - Prob. 109QRTCh. 8 - Consider these four gas samples, all at the same...Ch. 8 - Prob. 111QRTCh. 8 - Prob. 112QRTCh. 8 - Prob. 113QRTCh. 8 - Prob. 114QRTCh. 8 - Prob. 115QRTCh. 8 - Prob. 116QRTCh. 8 - Prob. 117QRTCh. 8 - Prob. 118QRTCh. 8 - Prob. 119QRTCh. 8 - Prob. 120QRTCh. 8 - Prob. 121QRTCh. 8 - Prob. 122QRTCh. 8 - Prob. 123QRTCh. 8 - Prob. 124QRTCh. 8 - Prob. 125QRTCh. 8 - Prob. 126QRTCh. 8 - Prob. 127QRTCh. 8 - Prob. 128QRTCh. 8 - Prob. 129QRTCh. 8 - Prob. 8.ACPCh. 8 - Prob. 8.BCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- How does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardNitroglycerin decomposes into four different gases when detonated: 4 C3H5(NO3)3() 6 N2(g) + O2(g) + 12 CO2(g) + 10 H2O(g) The detonation of a small quantity of nitroglycerin produces a total pressure of 4.2 atm at a temperature of 450 C. (a) What is the partial pressure of N2? (b) If the gases occupy a volume of 1.5 L, what mass of nitroglycerin was detonated?arrow_forwardAmmonia gas is synthesized by combining hydrogen and nitrogen: 3 H2(g) + N2(g) 2 NH3(g) (a) If you want to produce 562 g of NH3, what volume of H2 gas, at 56 C and 745 mm Hg, is required? (b) Nitrogen for this reaction will be obtained from air. What volume of air, measured at 29 C and 745 mm Hg pressure, will be required to provide the nitrogen needed to produce 562 g of NH3? Assume the sample of air contains 78.1 mole % N2.arrow_forward
- You have two pressure-proof steel cylinders of equal volume, one containing 1.0 kg of CO and the other containing 1.0 kg of acetylene, C2H2. (a) In which cylinder is the pressure greater at 25 C? (b) Which cylinder contains the greater number of molecules?arrow_forwardA reaction between liquid reactants takes place at -7.0 degrees Celsius in a sealed , evacuated vessel with a measured volume of 20.0 L. Measurements show that the reaction produced 13. g of carbon monoxide gas.arrow_forward24.00 g of solid calcium carbonate completely decomposes at 579 °C in a 12.000 L sealed vessel. The products of this decomposition are solid calcium oxide and carbon dioxide gas. Note: R = 0.08206 Latm/molK Determine the stoichiometric coefficient of carbon dioxide in the balanced chemical equation. Determine the theoretical yield of carbon dioxide in moles Determine the pressure of carbon dioxide gas produced in this reactionarrow_forward
- 12. A sample of solid potassium chlorate was heated in a test tube and decomposed into potassium chloride and oxygen gas. The oxygen produced was collected by displacement of water at 22ºC at a total pressure of 754 torr. The volume of the gas collected was 0.650 L, and the vapor pressure of water at 22ºC is 21 torr. Calculate the partial pressure of O2 in the gas collected and the mass of potassium chlorate in the sample that was decomposed. (2.13 g)arrow_forwardA 40.0 g sample of potassium metal is allowed to react with excess hydrochloric acid to produce H2 gas and aqueous KCl. The gas is collected over water at 23.0 °C in an evacuated chamber and the final volume of the chamber reached 10.3L. What was the pressure of the DRY H2 gas that was collected in the chamber. (HINT: The vapor pressure of water at 23.0 °C is 21.0 mmHg)arrow_forwardThe vapor pressure of mercury at 20 oC is 1.7 x 10-6 atm. Your lab partner breaks a mercury thermometer and spills most of the mercury onto the floor. The dimensions of the laboratory are 16.0 m x 8.0 m x 3.0 m (l x w x h). At 20 oC, calculate the mass (in grams) of the mercury vapor in the room. Determine if the concentration of mercury vapor exceeds air quality regulations of 5.0 x 10-2 mg/m3. How would you clean up this spell?arrow_forward
- Two bulbs of different volumes are separated by a valve. The valve between the 2.00 L bulb, in which the gas pressure is 1.00 atm, and the 3.00 L bulb in which the gas pressure is 2.5 atm, is opened. What is the final pressure in the two bulbs, the temperature being constant and the same in both bulbs? There is no reaction between the two gases.arrow_forwardGiven that the concentration of CH4 in the atmosphere is 1.8 ppm, calculate the total mass of this gas that is present in the atmosphere. Note that the total mass of the atmosphere is 5.1 x 1018 kg and that its average molar mass is 29.0 g/mol.arrow_forwardEach sketch below shows a flask with some gas and a pool of mercury in it. The gas is at a pressure of 1 atm. A J-shaped tube is connected to the bottom of the flask, and the mercury can freely flow in or out of this tube. (You can assume that there is so much more mercury in the pool than can fit into the tube that even if the J-tube is completely filled, the level of mercury in the pool won't change.) Notice also that in the left sketch the J-tube is open at its other end, so that air from the atmosphere can freely flow. On the other hand, in the right sketch the J-tube is closed at its other end, and you should assume there is no gas between the mercury and the closed end of the tube. To answer this question, you must decide what the mercury level will be when the mercury finally stops flowing in or out of the tube. By moving the sliders back and forth, you'll see different levels of mercury in the J-tube. Select the final correct level for each sketch. 1 1 2 I Don't Know open tube…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning