
A student sitting on a stool that is free to rotate, but is initially at rest, holds a bicycle wheel. The wheel has a rotational velocity of 8 rev/s about a vertical axis, as shown in the SP4 diagram. The rotational inertia of the wheel is 2.5 kg·m2 about its center, and the rotational inertia of the student and wheel and stool about the rotational axis of the stool is 6 kg·m2.
- a. What is the rotational velocity of the wheel in rad/s?
- b. What are the magnitude and direction of the initial
angular momentum of the system? - c. If the student flips the axis of the wheel, reversing the direction of its angular-momentum vector, what is the rotational velocity (magnitude and direction) of the student and the stool about their axis after the wheel is flipped? (Hint: See fig. 8.24.)
- d. Where does the torque come from that accelerates the student and the stool? Explain.
(a)

The rotational velocity of the wheel in
Answer to Problem 4SP
The rotational velocity of the wheel is
Explanation of Solution
Given info: The rotational velocity is
Write the expression for conversion relation connecting
Convert
Conclusion:
Therefore, the rotational velocity of the wheel is
(b)

The magnitude and the direction of the initial angular momentum of the system.
Answer to Problem 4SP
The angular momentum of the system is
Explanation of Solution
Write the expression for the angular momentum.
Here,
Substitute
Conclusion:
Therefore, the angular momentum of the system is
(c)

The rotational velocity of the student and the stool about their axis after the wheel is flipped.
Answer to Problem 4SP
The rotational velocity of the student and the stool about their axis is
Explanation of Solution
From the conservation of angular momentum, the angular velocity of the student and the stool is,
Here,
Rewrite the relation of the angular momentum then rearrange it for the rotational velocity of the student and the stool.
Rewrite the relation for the rotational velocity of the student and the stool.
Substitute
The direction of the rotational velocity of the student and the stool would be the direction of initial rotational velocity direction of the wheel.
Conclusion:
Therefore, the rotational velocity of the student and the stool about their axis is
(d)

Where will be the torque come from that accelerates the student and the stool.
Answer to Problem 4SP
The student exerts forces on the handles when he flips the wheel.
Explanation of Solution
For the flip of the wheel, the student exerts a certain amount force which creates the torque on the wheel then this torque produce the equal amount of opposite torque on the student and the stool. This happens for the system to be conserved.
Conclusion:
Therefore, the student exerts forces on the handles when he flips the wheel.
Want to see more full solutions like this?
Chapter 8 Solutions
Physics of Everyday Phenomena
- Gas is compressed in a cylinder creating 31 Joules of work on the gas during the isothermal process. How much heat flows from the gas into the cylinder in Joules?arrow_forwardThe heat engine gives 1100 Joules of energy of high temperature from the burning gasoline by exhausting 750 Joules to low-temperature . What is the efficiency of this heat engine in a percentage?arrow_forwardL₁ D₁ L₂ D2 Aluminum has a resistivity of p = 2.65 × 10 8 2. m. An aluminum wire is L = 2.00 m long and has a circular cross section that is not constant. The diameter of the wire is D₁ = 0.17 mm for a length of L₁ = 0.500 m and a diameter of D2 = 0.24 mm for the rest of the length. a) What is the resistance of this wire? R = Hint A potential difference of AV = 1.40 V is applied across the wire. b) What is the magnitude of the current density in the thin part of the wire? Hint J1 = c) What is the magnitude of the current density in the thick part of the wire? J₂ = d) What is the magnitude of the electric field in the thin part of the wire? E1 = Hint e) What is the magnitude of the electric field in the thick part of the wire? E2 =arrow_forward
- please helparrow_forwardA cheetah spots a gazelle in the distance and begins to sprint from rest, accelerating uniformly at a rate of 8.00 m/s^2 for 5 seconds. After 5 seconds, the cheetah sees that the gazelle has escaped to safety, so it begins to decelerate uniformly at 6.00 m/s^2 until it comes to a stop.arrow_forwardA projectile is fired with an initial speed of 40.2 m/s at an angle of 35.0 degree above the horizontal on a long flat firing range. Determine. please help and show work for them so i can understand.arrow_forward
- pls helparrow_forwardJ K L The graph in the figure shows the position of an object as a function of time. The letters H-L represent particular moments of time. At which moments shown (H, I, etc.) is the speed of the object the greatest? + Position H I K Timearrow_forward1. Two pendula of slightly different length oscillate next to each other. The short one oscillates with frequency 0.52 Hz and the longer one with frequency 0.50 Hz. If they start of in phase determine their phase difference after 75 s.arrow_forward
- A mass is connect to a vertical revolving axle by two strings of length L, each making an angle of 45 degrees with the axle, as shown. Both the axle and mass are revolving with angular velocity w, Gravity is directed downward. The tension in the upper string is T_upper and the tension in the lower string is T_lower.Draw a clear free body diagram for mass m. Please include real forces only.Find the tensions in the upper and lower strings, T_upper and T_lowerarrow_forward2. A stone is dropped into a pool of water causing ripple to spread out. After 10 s the circumference of the ripple is 20 m. Calculate the velocity of the wave.arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram. A. How much energy does the ice absorb as heat when it melts? B. How much work is involved in melting the ice? C. What is the total change in energy for melting the ice? D. What is the enthalpy change for melting the ice? E. What is the entropy change for melting the ice? F. What is the change in Helmholtz energy for melting the ice? G. What is the change in Gibbs energy for melting the ice?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





