
A merry-go-round in the park has a radius of 1.5 m and a rotational inertia of 800 kg·m2. A child pushes the merry-go-round with a constant force of 92 N applied at the edge and parallel to the edge. A frictional torque of 14 N·m acts at the axle of the merry-go-round.
- a. What is the net torque acting on the merry-go-round about its axle?
- b. What is the rotational acceleration of the merry-go-round?
- c. At this rate, what will the rotational velocity of the merry-go-round be after 16 s if it starts from rest?
- d. If the child stops pushing after 16 s, the net torque is now due solely to the friction. What then is the rotational acceleration of the merry-go-round? How long will it take for the merry-go-round to stop turning?
(a)

The net torque acting on the merry –go-round about its axle.
Answer to Problem 1SP
The net torque acting on the merry-go-round is
Explanation of Solution
Given info: Radius is
Write the expression for the net torque.
Here,
Substitute
The net torque acting on the merry-go round is given by subtracting from the frictional torque.
Conclusion:
Therefore, the net torque acting on the merry-go-round is
(b)

The rotational acceleration of the merry-go-round.
Answer to Problem 1SP
The rotational acceleration of the merry-go-round is
Explanation of Solution
Write the expression for the rotational acceleration.
Here,
Substitute
Conclusion:
Therefore, the rotational acceleration of the merry-go-round is
(c)

The rotational velocity of the merry-go-round after
Answer to Problem 1SP
The rotational velocity of the merry-go-round will be
Explanation of Solution
Write the expression for the rotational velocity.
Here,
Substitute
Conclusion:
Therefore, the rotational velocity of the merry-go-round will be
(d)

Rotational acceleration of the merry-go-round and the time taken for the merry-go-round to stop running.
Answer to Problem 1SP
The rotational acceleration will be
Explanation of Solution
The net torque is only due to the friction.
Write the expression for the rotational acceleration.
Substitute
Write the expression for the rotational velocity.
Rearrange the above equation to find
Substitute
Conclusion:
Therefore, rotational acceleration will be
Want to see more full solutions like this?
Chapter 8 Solutions
Physics of Everyday Phenomena
- Mick and Rick are twins born on Earth in the year 2175. Rick grows up to be an Earth-bound robotics technician while Mick becomes an intergalactic astronaut. Mick leaves the Earth on his first space mission in the year 2200 and travels, according to his clock, for 10 years at a speed of 0.75c. Unfortunately, at this point in his journey, the structure of his ship undergoes mechanical breakdown and the ship explodes. How old is Rick when his brother dies?arrow_forwardHi, I have canceled, why did you charge me again?arrow_forwardNo chatgpt pls will upvotearrow_forward
- For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forwardWhat are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forward
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





