COLLEGE PHYSICS:STRATEGIC APPR.AP ED.
4th Edition
ISBN: 9780137574728
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 4P
To determine
To find: The force exerted on the beam by the right support when the beam just starts to tip.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The arm in Figure P8.17 weighs 41.5 N. The force of
gravity acting on the arm acts through point A. Determine the
magnitudes of the tension force F, in the deltoid muscle and
the force F, exerted by the shoulder on the humerus (upper-
arm bone) to hold the arm in the position shown.
F,
12°
F,
'0.080 m
-0.290 m
Figure P8.17
A 25.0 kg floodlight in a park is supported at the end of a horizontal beam of negligible mass that is hinged to a pole, as
shown in Figure P8.22. A cable at an angle of 30.0° with the beam helps to support the light.
30,0%
Figure P8.221
(a) Find the tension in the cable.
N
(b) Find the horizontal and vertical forces exerted on the beam by the pole.
horizontal
N (to the right)
vertical
N (upward)
What is the student’s weight?
Chapter 8 Solutions
COLLEGE PHYSICS:STRATEGIC APPR.AP ED.
Ch. 8 - Prob. 1CQCh. 8 - Could a ladder on a level floor lean against a...Ch. 8 - Prob. 3CQCh. 8 - Prob. 4CQCh. 8 - Prob. 5CQCh. 8 - Prob. 6CQCh. 8 - Prob. 7CQCh. 8 - A spring exerts a 10 N force after being stretched...Ch. 8 - Prob. 9CQCh. 8 - A typical mattress has a network of springs that...
Ch. 8 - Take a spring and cut it in half to make two...Ch. 8 - A wire is stretched right to its breaking point by...Ch. 8 - Prob. 13CQCh. 8 - Prob. 14CQCh. 8 - Steel nails are rigid and unbending. Steel wool is...Ch. 8 - Two children hold opposite ends of a lightweight,...Ch. 8 - Prob. 19MCQCh. 8 - Prob. 20MCQCh. 8 - Prob. 21MCQCh. 8 - Prob. 22MCQCh. 8 - Prob. 23MCQCh. 8 - Prob. 24MCQCh. 8 - Prob. 25MCQCh. 8 - Prob. 26MCQCh. 8 - You have a heavy piece of equipment hanging from a...Ch. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Youre carrying a 3.6-m-long, 25 kg pole to a...Ch. 8 - Prob. 6PCh. 8 - Prob. 7PCh. 8 - Prob. 9PCh. 8 - Prob. 11PCh. 8 - Prob. 13PCh. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - The stability of a vehicle is often rated by the...Ch. 8 - Prob. 18PCh. 8 - A car manufacturer claims that you can drive its...Ch. 8 - Prob. 20PCh. 8 - An orthodontic spring, connected between the upper...Ch. 8 - Prob. 22PCh. 8 - Experiments using optical tweezers measure the...Ch. 8 - Prob. 24PCh. 8 - One end of a 10-cm-long spring is attached to the...Ch. 8 - Prob. 26PCh. 8 - A spring has an unstretched length of 10 cm. It...Ch. 8 - A spring stretches 5.0 cm when a 0.20 kg block is...Ch. 8 - You need to make a spring scale to measure the...Ch. 8 - Prob. 30PCh. 8 - A force stretches a wire by 1.0 mm. a. A second...Ch. 8 - Prob. 32PCh. 8 - What hanging mass will stretch a 2.0-m-long,...Ch. 8 - An 80-cm-long, 1.0-mm-diameter steel guitar string...Ch. 8 - A mineshaft has an ore elevator hung from a single...Ch. 8 - The normal force of the ground on the foot can...Ch. 8 - A three-legged wooden bar stool made out of solid...Ch. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Prob. 40PCh. 8 - A glass optical fiber in a communications system...Ch. 8 - The Achilles tendon connects the muscles in your...Ch. 8 - Prob. 44PCh. 8 - Prob. 47PCh. 8 - Prob. 48PCh. 8 - Prob. 49PCh. 8 - Prob. 51GPCh. 8 - Prob. 52GPCh. 8 - Prob. 53GPCh. 8 - Prob. 55GPCh. 8 - Two identical, side-by-side springs with spring...Ch. 8 - Prob. 57GPCh. 8 - Prob. 58GPCh. 8 - Prob. 59GPCh. 8 - A 25 kg child bounces on a pogo stick. The pogo...Ch. 8 - Prob. 61GPCh. 8 - In the hammer throw, an athlete spins a heavy mass...Ch. 8 - There is a disk of cartilage between each pair of...Ch. 8 - Orb spiders make silk with a typical diameter of...Ch. 8 - Larger animals have sturdier bones than smaller...Ch. 8 - Prob. 67GPCh. 8 - Prob. 68GPCh. 8 - Prob. 69MSPPCh. 8 - Prob. 70MSPPCh. 8 - Prob. 71MSPPCh. 8 - Prob. 72MSPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A crane of mass m1 = 3 000 kg supports a load of mass m2 = 10 000 kg as shown in Figure P10.36. The crane is pivoted with a frictionless pin at A and rests against a smooth support at B. Find the reaction forces at (a) point A and (b) point B. Figure P10.36arrow_forwardA massless, horizontal beam of length L and a massless rope support a sign of mass m (Fig. P14.78). a. What is the tension in the rope? b. In terms of m, g, d, L, and , what are the components of the force exerted by the beam on the wall? FIGURE P14.78arrow_forward(a) When opening a door, you push on it perpendicularly with a force of 55.0 N at a distance of 0.850 m from the hinges. What torque are you exerting relative to the hinges? (b) Does it matter if you push at the same height as the hinges? There is only one pair of hinges.arrow_forward
- A 215-kg robotic arm at an assembly plant is extended horizontally (Fig. P14.32). The massless support rope attached at point B makes an angle of 15.0 with the horizontal, and the center of mass of the arm is at point C. a. What is the tension in the support rope? b. What are the magnitude and direction of the force exerted by the hinge A on the robotic arm to keep the arm in the horizontal position? FIGURE P14.32arrow_forwardA cook holds a 2.00-kg carton of milk at arm's length must be exerted by the biceps (Fig. P8.19). What force F muscle? (Ignore the weight of the forearm.) Milk 75.0° 25.0 cm 8.00 cm Figure P8.19arrow_forwardA 40.0 kg boy sits on a seesaw 3.0 m away from the pivot point. The mass of the wooden plank is 5.0 kg. A 30 kg boy sits opposite the 40.0 kg boy to balance the seesaw. What is the normal force exerted by the pivot point? g = 9.8arrow_forward
- A 5 kg beam 2 meters long is used to support a 10 kg sign by means of a cable attached to a building. The signs hangs from the end of the 2 m long beam, and the cable makes a 40 degree angle with the beam. What is the tension in the cable?arrow_forwardIf you hold your arm outstretched with palm upward, as shown, the force to keep your arm from falling comes from your deltoid muscle. The arm of a typical person has mass 4.0 kg and the distances and angles shown in the figure.a. What force must the deltoid muscle provide to keep the arm in this position?b. By what factor does this force exceed the weight of the arm?arrow_forwardA woman weighing 580 N does a pushup from her knees, as shown. What are the normal forces of the floor on (a) each of her hands and (b) each of her knees?arrow_forward
- The two ends of the barbell shown are made of the same material. Which of the points shown is at the barbell’s center of gravity?arrow_forwardA. Who should sit farther from the center of a uniform seesaw, a 93-kg man or his 33-kg son, for the seesaw to remain in a horizontal position? Explain. B. Illustrate the figure and solve the problem by showing complete solution. Ella weighing 225 N sits at one end of a see-saw 4 m long. If Omar sits opposite her 150 cm away from the center, they balance each other. What is the weight of Omar? ( Disregard the weight of the seesaw)arrow_forwardWhen you carry shopping bags, rather than grasp the handles with your hand as in Q8.14a, you might choose to put them over your arm and slide the handle toward your elbow as in Q8.14b. Explain why this leads to less muscle effort to carry the bags and less force in your elbow joint.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University