
Conceptual Physics (12th Edition)
12th Edition
ISBN: 9780321909107
Author: Paul G. Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 45RCQ
To tighten a bolt, you push with a force of 80 N at the end of a wrench handle that is 0.25 m from the axis of the bolt.
- What torque are you exerting?
- You move your hand inward to be only 0.10 m from the bolt. To achieve the same torque, show that you should exert 200 N of force.
- Do your answers depend on the direction of your push relative to the direction of the wrench handle?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Lab 8 Part 3 PHET Wave Interface simulation.
I am having trouble with this part of the lab.
Mick and Rick are twins born on Earth in the year 2175. Rick grows up to be an Earth-bound robotics technician while Mick becomes an intergalactic astronaut. Mick leaves the Earth on his first space mission in the year 2200 and travels, according to his clock, for 10 years at a speed of 0.75c. Unfortunately, at this point in his journey, the structure of his ship undergoes mechanical breakdown and the ship explodes. How old is Rick when his brother dies?
Hi,
I have canceled, why did you charge me again?
Chapter 8 Solutions
Conceptual Physics (12th Edition)
Ch. 8 - What are the units of measurement for tangential...Ch. 8 - On a rotating turntable, does tangential speed or...Ch. 8 - A tapered cup rolled on a flat surface makes a...Ch. 8 - How does the tapered rim of a wheel on a railroad...Ch. 8 - 5. What is rotational inertia, and how is it...Ch. 8 - 6. Inertia depends on mass; rotational inertia...Ch. 8 - 7. As distance increases between most of the mass...Ch. 8 - 8. Consider three axes of rotation for a pencil:...Ch. 8 - 9. Which is easier to get swinging: a baseball bat...Ch. 8 - Why does bending your legs when running enable you...
Ch. 8 - 11. Which will have the greater acceleration...Ch. 8 - 12. What does a torque tend to do to an object?
Ch. 8 - 13. What is meant by the “lever arm” of a...Ch. 8 - 14. How do clockwise and counterclockwise torques...Ch. 8 - 15. If you toss a stick into the air, it appears...Ch. 8 - Prob. 16RCQCh. 8 - 17. If you hang at rest by your hands from a...Ch. 8 - Where is the center of mass of a hollow soccer...Ch. 8 - 19. What is the relationship between the center of...Ch. 8 - 20. Why doesn’t the Leaning Tower of Pisa topple...Ch. 8 - 21. In terms of center of gravity, support base,...Ch. 8 - 22.When you whirl a can at the end of a string in...Ch. 8 - 23. Is it an inward force or an outward force that...Ch. 8 - 24. If the string that holds a whirling can in its...Ch. 8 - 25. If you are not wearing a seat belt in a car...Ch. 8 - 26. Why is centrifugal force in a rotating frame...Ch. 8 - 27. How can gravity be simulated in an orbiting...Ch. 8 - 28. Distinguish between linear momentum and...Ch. 8 - 29. What is the law of inertia for rotating...Ch. 8 - If a skater who is spinning pulls her arms in so...Ch. 8 - Contact Grandpa and tell him how you’re learning...Ch. 8 - Prob. 32RCQCh. 8 - Prob. 33RCQCh. 8 - Prob. 34RCQCh. 8 - Prob. 35RCQCh. 8 - Prob. 36RCQCh. 8 - Prob. 37RCQCh. 8 - Torque = lever arm ×...Ch. 8 - 39. Calculate the torque produced by the same 50-N...Ch. 8 - Prob. 40RCQCh. 8 - 41. Calculate the force of friction that keeps an...Ch. 8 - Angular momentum =...Ch. 8 - 43. If a persons speed doubles and all else...Ch. 8 - 44. The diameter of the base of a tapered...Ch. 8 - To tighten a bolt, you push with a force of 80 N...Ch. 8 - 46. The rock and meterstick balance at the 25-cm...Ch. 8 - In one of the photos at the beginning of this...Ch. 8 - 48. An ice puck of mass m revolves on an icy...Ch. 8 - 49. If a trapeze artist rotates once each second...Ch. 8 - A small space telescope at the end of a tether...Ch. 8 - 51. The three cups are rolled on a level surface....Ch. 8 - 52. Three types of rollers are placed on slightly...Ch. 8 - 53. Beginning from a rest position, a solid disk...Ch. 8 - 54. You hold a meterstick at one end with the same...Ch. 8 - 55. Three physics majors in good physical shape...Ch. 8 - Prob. 56RCQCh. 8 - Prob. 57RCQCh. 8 - Prob. 58RCQCh. 8 - 59. The wheels of railroad trains are tapered, a...Ch. 8 - Prob. 60RCQCh. 8 - 61. The front wheels of a racing vehicle are...Ch. 8 - 62. Which will have the greater acceleration...Ch. 8 - Prob. 63RCQCh. 8 - 64. Is the net torque changed when a partner on a...Ch. 8 - Prob. 65RCQCh. 8 - 66. When you pedal a bicycle, maximum torque is...Ch. 8 - Prob. 67RCQCh. 8 - Prob. 68RCQCh. 8 - Prob. 69RCQCh. 8 - Prob. 70RCQCh. 8 - 71. Explain why a long pole is more beneficial to...Ch. 8 - Prob. 72RCQCh. 8 - Prob. 73RCQCh. 8 - Prob. 74RCQCh. 8 - Prob. 75RCQCh. 8 - Prob. 76RCQCh. 8 - Prob. 77RCQCh. 8 - Prob. 78RCQCh. 8 - 79. The centers of gravity of the three trucks...Ch. 8 - Prob. 80RCQCh. 8 - Prob. 81RCQCh. 8 - Prob. 82RCQCh. 8 - 83. When you are in the front passenger seat of a...Ch. 8 - Prob. 84RCQCh. 8 - Prob. 85RCQCh. 8 - Prob. 86RCQCh. 8 - 87. The occupant inside a rotating space habitat...Ch. 8 - Prob. 88RCQCh. 8 - A motorcyclist is able to ride on the vertical...Ch. 8 - 90. The sketch shows a conical pendulum. The bob...Ch. 8 - Prob. 91RCQCh. 8 - Prob. 92RCQCh. 8 - Prob. 93RCQCh. 8 - 94. If all of Earth’s inhabitants moved to the...Ch. 8 - Prob. 95RCQCh. 8 - If the world’s populations moved to the North Pole...Ch. 8 - Prob. 97RCQCh. 8 - 98. Why does a typical small helicopter with a...Ch. 8 - 99. We believe that our galaxy was formed from a...Ch. 8 - Prob. 100RCQCh. 8 - Prob. 101RCQCh. 8 - Prob. 102RCQCh. 8 - Prob. 103RCQCh. 8 - 104.When a car drives off a cliff it rotates...Ch. 8 - 105. Discuss why a car noses up when accelerating...Ch. 8 - 106. Discuss how a ramp would help you to...Ch. 8 - 107. Which will roll down an incline faster: a can...Ch. 8 - 108. Why are lightweight tires preferred in...Ch. 8 - 109. A youngster who has entered a soapbox derby...Ch. 8 - 110. The spool is pulled in three ways, as shown....Ch. 8 - 111. Nobody at the playground wants to play with...Ch. 8 - 112. How can the three bricks be stacked so that...Ch. 8 - 113. A long track balanced like a seesaw supports...Ch. 8 - With respect to Diana’s finger, where is the...Ch. 8 - When a long-range cannonball is fired toward the...Ch. 8 - Most often we say that force causes acceleration....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY