Concept explainers
Interpretation:
The special cases of the
Concept Introduction:
Ideal gas law is applicable to those gases which obey Boyle’s law and Charles’s law. The ideal gas equation can be obtained by combining the equations of Boyle’s law and Charles’s law.
At constant temperature, (Boyle’s law)
At constant volume, (Charles’s law)
By combining the above equations,
Where R= proportionality constant called as gas constant.
The general equation for ideal gas law is written as,
Where n= number of moles
Trending nowThis is a popular solution!
Chapter 8 Solutions
Chemistry: An Atoms First Approach
- Explain why the plot of PV for CO2 differs from that of an ideal gas.arrow_forwardConsider the following sketch. Each square in bulb A represents a mole of atoms X. Each circle in bulb B represents a mole of atoms Y. The bulbs have the same volume, and the temperature is kept constant. When the valve is opened, atoms of X react with atoms of Y according to the following equation: 2X(g)+Y(g)X2Y(g)The gaseous product is represented as and each represents one mole of product. (a) IfP A=2.0 atm, what is P8 before the valve is opened and the reaction is allowed to occur? What is P A+P B? (b) Redraw the sketch to represent what happens after the valve is opened. (c) What is PA? What is PB? What is P A+P B? Compare your answer with the answer in part (a).arrow_forwardIn the Mthode Champenoise, grape juice is fermented in a wine bottle to produce sparkling wine. The reaction is C6H12O6(aq)2C2H5OH(aq)+2CO2(g) Fermentation of 750. mL grape juice (density = 1.0 g/cm3) is allowed to take place in a bottle with a total volume of 825 mL until 12% by volume is ethanol (C2H5OH). Assuming that the CO2 is insoluble in H2O (actually, a wrong assumption), what would be the pressure of CO2 inside the wine bottle at 25C? (The density of ethanol is 0.79 g/cm3.)arrow_forward
- You have a gas, one of the three known phosphorus-fluorine compounds (PF3, PF3, and P2F4). To find out which, you have decided to measure its molar mass. (a) First, yon determine that the density of the gas is 5.60 g/L at a pressure of 0.971 atm and a temperature of 18.2 C. Calculate the molar mass and identify the compound. (b) To check the results from part (a), you decide to measure the molar mass based on the relative rales of effusion of the unknown gas and CO2. You find that CO2 effuses at a rate of 0.050 mol/min, whereas the unknown phosphorus fluoride effuses at a rate of 0.028 mol/min. Calculate the molar mass of the unknown gas based on these results.arrow_forwardPlot the data given in Table 5.3 for oxygen at 0C to obtain an accurate molar mass for O2. To do this, calculate a value of the molar mass at each of the given pressures from the ideal gas law (we will call this the apparent molar mass at this pressure). On a graph show the apparent molar mass versus the pressure and extrapolate to find the molar mass at zero pressure. Because the ideal gas law is most accurate at low pressures, this extrapolation will give an accurate value for the molar mass. What is the accurate molar mass?arrow_forward47 HCl(g) reacts with ammonia gas, NH3(g), to form solid ammonium chloride. If a sample of ammonia occupying 250 mL at 21 C and a pressure of 140 torr is allowed to react with excess HCl, what mass of NH4Cl will form?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning