A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a friction less, vertical axle. A constant tangential force of 250. N applied to its edge causes the wheel to have an angular acceleration of 0.940 rad/s 2 . (a) What is the moment of inertia of the wheel? (b) What is the mass of the wheel? (c) If the wheel starts from rest, what is its angular velocity after 5.00 s have elapsed, assuming the force is acting during that time?
A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a friction less, vertical axle. A constant tangential force of 250. N applied to its edge causes the wheel to have an angular acceleration of 0.940 rad/s 2 . (a) What is the moment of inertia of the wheel? (b) What is the mass of the wheel? (c) If the wheel starts from rest, what is its angular velocity after 5.00 s have elapsed, assuming the force is acting during that time?
Solution Summary: The author explains the formula for the moment of inertia of the wheel: I=rFalpha
A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a friction less, vertical axle. A constant tangential force of 250. N applied to its edge causes the wheel to have an angular acceleration of 0.940 rad/s2.
(a) What is the moment of inertia of the wheel? (b) What is the mass of the wheel? (c) If the wheel starts from rest, what is its angular velocity after 5.00 s have elapsed, assuming the force is acting during that time?
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
Need help on the following questions on biomechanics. (Please refer to images below)A gymnast weighing 68 kg attempts a handstand using only one arm. He plants his handat an angle resulting in the reaction force shown.A) Find the resultant force (acting on the Center of Mass)B) Find the resultant moment (acting on the Center of Mass)C) Draw the resultant force and moment about the center of mass on the figure below. Will the gymnast rotate, translate, or both? And in which direction?
Please help me on the following question (Please refer to image below)An Olympic lifter (m = 103kg) is holding a lift with a mass of 350 kg. The barexerts a purely vertical force that is equally distributed between both hands. Each arm has amass of 9 kg, are 0.8m long and form a 40° angle with the horizontal. The CoM for each armis 0.5 m from hand. Assuming the lifter is facing us in the diagram below, his right deltoidinserts 14cm from the shoulder at an angle of 13° counter-clockwise from the humerus.A) You are interested in calculating the force in the right deltoid. Draw a free body diagramof the right arm including the external forces, joint reaction forces, a coordinate system andstate your assumptions.B) Find the force exerted by the right deltoidC) Find the shoulder joint contact force. Report your answer using the magnitude and directionof the shoulder force vector.
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.