College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 10CQ
An object is acted on by a single nonzero force of magnitude F. (a) Is it possible for the object to have zero acceleration a? (b) Is it possible for the object to have zero
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
An object is acted on by a single nonzero force of magnitude F.
HINT
(a) Is it possible for the object to have zero acceleration a?
O Yes
O No
(b) Is it possible for the object to have zero angular acceleration a?
O Yes
O No
(c) Is it possible for the object to be in mechanical equilibrium?
O Yes
O No
Need Help?
Read It
Two forces of an equal magnitude and opposite directions are applied to a rigid object. Will the object necessary be in equilibrium?
O Yes, always
O The object will be in equilibrium only when one of the forces is applied to its center of mass
O No, because the object may have non-zero translational acceleration
O No, because the object may have non-zero angular acceleration
At its lowest setting a centrifuge rotates with an angular speed of ω1 = 250 rad/s. When it is switched to the next higher setting it takes t = 9.5 s to uniformly accelerate to its final angular speed ω2 = 550 rad/s.
(a) Calculate the angular acceleration of the centrifuge α1 in rad/s2 over the time interval t.
(b) Calculate the total angular displacement (in radians) of the centrifuge, Δθ, as it accelerates from the initial to the final speed.
Chapter 8 Solutions
College Physics
Ch. 8.4 - Using a screwdriver, you try to remove a screw...Ch. 8.4 - A constant net torque is applied to an object....Ch. 8.4 - The two rigid objects shown in Figure 8.21 have...Ch. 8.5 - Two spheres, one hollow and one solid, are...Ch. 8.6 - A horizontal disk with moment of inertia I1...Ch. 8.6 - If global warming continues, its likely that some...Ch. 8 - Why cant you put your heels firmly against a wall...Ch. 8 - Two point masses are the same distance R from an...Ch. 8 - If you see an object rotating, is there...Ch. 8 - (a) Is it possible to calculate the torque acting...
Ch. 8 - Why does a long pole help a tightrope walker stay...Ch. 8 - A person stands a distance R from a doors hinges...Ch. 8 - Orbiting spacecraft contain internal gyroscopes...Ch. 8 - If you toss a textbook into the air, rotating it...Ch. 8 - Stars originate as large bodies of slowly rotating...Ch. 8 - An object is acted on by a single nonzero force of...Ch. 8 - In a tape recorder, the tape is pulled past the...Ch. 8 - (a) Give an example in which the net force acting...Ch. 8 - Gravity is an example of a central force that acts...Ch. 8 - A cat usually lands on its feet regardless of the...Ch. 8 - A solid disk and a hoop are simultaneously...Ch. 8 - A mouse is initially at rest on a horizontal...Ch. 8 - The cars in a soapbox derby have no engines; they...Ch. 8 - A man opens a 1.00-m wide door by pushing on it...Ch. 8 - A worker applies a torque to a nut with a wrench...Ch. 8 - The fishing pole in Figure P8.3 makes an angle of...Ch. 8 - Find the net torque on the wheel in Figure P8.4...Ch. 8 - Figure P8.4 Calculate the net torque (magnitude...Ch. 8 - A dental bracket exerts a horizontal force of 80.0...Ch. 8 - A simple pendulum consists of a small object of...Ch. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - The Xanthar mothership locks onto an enemy cruiser...Ch. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Torque and the Two Conditions for Equilibrium 17....Ch. 8 - Prob. 18PCh. 8 - A cook holds a 2.00-kg carton of milk at arm's...Ch. 8 - A meter stick is found to balance at the 49.7-cm...Ch. 8 - Prob. 21PCh. 8 - A beam resting on two pivots has a length of L =...Ch. 8 - Prob. 23PCh. 8 - When a person stands on tiptoe (a strenuous...Ch. 8 - A 500.-N uniform rectangular sign 4.00 m wide and...Ch. 8 - A window washer is standing on a scaffold...Ch. 8 - A uniform plank of length 2.00 m and mass 30.0 kg...Ch. 8 - A hungry bear weighing 700. N walks out on a beam...Ch. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - Write the necessary equations of equilibrium of...Ch. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - Prob. 36PCh. 8 - Four objects are held in position at the corners...Ch. 8 - If the system shown in Figure P8.37 is set in...Ch. 8 - A large grinding wheel in the shape of a solid...Ch. 8 - An oversized yo-yo is made from two identical...Ch. 8 - An approximate model for a ceiling fan consists of...Ch. 8 - A potters wheel having a radius of 0.50 m and a...Ch. 8 - A model airplane with mass 0.750 kg is tethered by...Ch. 8 - A bicycle wheel has a diameter of 64.0 cm and a...Ch. 8 - A 150.-kg merry-go-round in the shape of a...Ch. 8 - An Atwoods machine consists of blocks of masses m1...Ch. 8 - The uniform thin rod in Figure P8.47 has mass M =...Ch. 8 - A 2.50-kg solid, uniform disk rolls without...Ch. 8 - A horizontal 800.-N merry-go-round of radius 1.50...Ch. 8 - Four objectsa hoop, a solid cylinder, a solid...Ch. 8 - A light rod of length = 1.00 m rotates about an...Ch. 8 - A 240-N sphere 0.20 m in radius rolls without...Ch. 8 - A solid, uniform disk of radius 0.250 m and mass...Ch. 8 - A car is designed to get its energy from a...Ch. 8 - The top in Figure P8.55 has a moment of inertia of...Ch. 8 - A constant torque of 25.0 N m is applied to a...Ch. 8 - A 10.0-kg cylinder rolls without slipping on a...Ch. 8 - Use conservation of energy to determine the...Ch. 8 - A 2.00-kg solid, uniform ball of radius 0.100 m is...Ch. 8 - Each of the following objects has a radius of...Ch. 8 - A metal hoop lies on a horizontal table, free to...Ch. 8 - A disk of mass m is spinning freely at 6.00 rad/s...Ch. 8 - (a) Calculate the angular momentum of Earth that...Ch. 8 - A 0.005 00-kg bullet traveling horizontally with a...Ch. 8 - A light, rigid rod of length = 1.00 m rotates...Ch. 8 - Haileys comet moves about the Sun in an elliptical...Ch. 8 - A student holds a spinning bicycle wheel while...Ch. 8 - A 60.0-kg woman stands at the rim of a horizontal...Ch. 8 - A solid, horizontal cylinder of mass 10.0 kg and...Ch. 8 - A student sits on a rotating stool holding two...Ch. 8 - The puck in Figure P8.71 has a mass of 0.120 kg....Ch. 8 - A space station shaped like a giant wheel has a...Ch. 8 - A cylinder with moment of inertia I1 rotates with...Ch. 8 - A particle of mass 0.400 kg is attached to the...Ch. 8 - Additional Problems A typical propeller of a...Ch. 8 - Prob. 76APCh. 8 - Prob. 77APCh. 8 - Prob. 78APCh. 8 - A uniform ladder of length L and weight w is...Ch. 8 - Two astronauts (Fig. P8.80), each haring a mass of...Ch. 8 - S This is a symbolic version of problem 80. Two...Ch. 8 - Two window washers. Bob and Joe, are on a...Ch. 8 - A 2.35-kg uniform bar of length = 1.30 m is held...Ch. 8 - A light rod of length 2L is free to rotate in a...Ch. 8 - Prob. 85APCh. 8 - A uniform thin rod of length L and mass M is free...Ch. 8 - Prob. 87APCh. 8 - Prob. 88APCh. 8 - A war-wolf, or trebuchet, is a device used during...Ch. 8 - A string is wrapped around a uniform cylinder of...Ch. 8 - The Iron Cross When a gymnast weighing 750 N...Ch. 8 - In an emergency situation, a person with a broken...Ch. 8 - An object of mass m1 = 4.00 kg is connected by a...Ch. 8 - Prob. 94APCh. 8 - A 3.2-kg sphere is suspended by a cord that passes...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The refractive index of a human cornea is 1.40. If 550-nm light strikes a cornea at incidence angle 25, find (a...
Essential University Physics: Volume 2 (3rd Edition)
2. Which of the following is the best example of the use of a referent? _
a. A red bicycle
b. Big as a dump tru...
Physical Science
An electric motor has an effective resistance of 32.0 and an inductive reactance of 45.0 when working under l...
Fundamentals Of Physics - Volume 1 Only
How is the charging time for a capacitor correlated with the initial current? That is, if the initial current i...
Matter and Interactions
Given: W = 132 J t = 7.00 s p = ?
Applied Physics (11th Edition)
A container ship is 240m long and 22m wide. Assume that the shape is like a rectangular box. How much mass does...
Fundamentals Of Thermodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56). When his arms are extended horizontally (Fig. P10.56a), the dumbbells are 1.00 m from the axis of rotation and the student rotates with an angular speed of 0.750 rad/s. The moment of inertia of the student plus stool is 3.00 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.300 m from the rotation axis (Fig. P10.56b). (a) Find the new angular speed of the student. (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward. Figure P10.56arrow_forwardConsider the disk in Problem 71. The disks outer rim hasradius R = 4.20 m, and F1 = 10.5 N. Find the magnitude ofeach torque exerted around the center of the disk. FIGURE P12.71 Problems 71-75arrow_forwardSection 11.5 The Motion of Gyroscopes and Tops A spacecraft is in empty space. It carries on board gyroscope with a moment of inertia of Ig = 20.0 kgm2 about the axis of the gyroscope. The moment of inertia of the spacecraft around the same axis is Is = 5.00 X 105 kgm2. Neither the spacecraft nor the gyroscope is originally rotating. The gyroscope can be powered up in a negligible period of time to an angular speed of 100 rad/s. If the orientation of the spacecraft is to be changed by 30.0, for what time interval should the gyroscope be operated?arrow_forward
- Find the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forwardAs shown in Figure OQ10.9, a cord is wrapped onto a cylindrical reel mounted on a fixed, frictionless, horizontal axle. When does the reel have a greater magnitude of angular acceleration? (a) When the cord is pulled down with a constant force of 50 N. (b) When an object of weight 50 N is hung from the cord and released. (c) The angular accelerations in parts (a) and (b) are equal. (d) It is impossible to determine. Figure OQ10.9arrow_forwardA space station is constructed in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (See Fig. P10.52.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. (a) What angular momentum does the space station acquire? (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N? Figure P10.52 Problems 52 and 54.arrow_forward
- A solid cylinder (LaTeX: I\:=\frac{\:1}{2}MR^2 I = 1 2 M R 2 ) potter's wheel is a thick stone of radius 7 m with mass 5 kg. It freely rotates at 9 radian per second. The potter press a wet rag against the rim and exert a radially inward force of 10 N. If the coefficient of kinetic friction between the rag and the wheel is 0.6, find the time needed for the wheel to stop in seconds.arrow_forwardA uniform rod is set up so that it can rotate about an axis at perpendicular to one of its ends. The length and mass of the rod are 0.765 m and 1.27 kg respectively. A force of constant magnitude ?F acts on the rod at the end opposite the rotation axis. The direction of the force is perpendicular to both the rod's length and the rotation axis. Calculate the value of ?F that will accelerate the rod from rest to an angular speed of 6.21 rad/s in 9.91 sarrow_forwardA particle is located at the position vector r = (7.00Î + 10.00ĵ) m and a force exerted on it is given by F = (6.ooî + 5.00ĵ) N. (a) What is the torque acting on the particle about the origin? N.m (b) Can there be another point about which the torque caused by this force on this particle will be in the opposite direction and half as large in magnitude? Yes No (c) Can there be more than one such point? Yes No (d) Can such a point lie on the y-axis? Yes No (e) Can more than one such point lie on the y-axis? Yes No (f) Determine the position vector of one such point. (Give a point on the y-axis.)arrow_forward
- A particle is located at the position vector r = (6.00î + 7.00j) m and a force exerted on it is given by F = (4.00î + 3.00j) N. (a) What is the torque acting on the particle about the origin? T = N. marrow_forwardIn unit-vector notation, what is the net torque about the origin on a flea located at coordinates (1.0 m, -3.0 m, 4.0 m) when forces F₁ = (-1.0 N)k and F₂ = (-4.0 N) ĵ act on the flea? T = N•marrow_forwardThe circular disk of 270-mm radius has a mass of 36 kg with centroidal radius of gyration k⎯⎯k¯ = 235 mm and has a concentric circular groove of 105-mm radius cut into it. A steady force T is applied at an angle θ to a cord wrapped around the groove as shown. If T = 59 N, θ = 29°, μs = 0.08, and μk = 0.07, determine the angular acceleration α of the disk, the acceleration a of its mass center G, and the friction force F which the surface exerts on the disk. The angular acceleration α is positive if counterclockwise, negative if clockwise; the acceleration a is positive if to the right, negative if to the left; and the friction force F is positive if to the right, negative if to the left..arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License