![Chemistry & Chemical Reactivity](https://www.bartleby.com/isbn_cover_images/9781305176461/9781305176461_largeCoverImage.jpg)
Concept explainers
Three resonance structures are possible for dinitrogen monoxide, N2O.
- (a) Draw the three resonance structures.
- (b) Calculate the formal charge on each atom in each resonance structure.
- (c) Based on formal charges and electronegativity, predict which resonance structure is the most reasonable.
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
The three resonance structure of
Concept Introduction:
Resonance structures: A molecule or ion which show more than structure but none of them are accurately correct show the known property of that molecule, and can lie between the canonical structure is known as resonance or canonical or contributing structure.
Explanation of Solution
The three resonance structure is drawn
(b)
![Check Mark](/static/check-mark.png)
Interpretation:
Formal charge on each atom in each resonance structure has to be calculated.
Concept Introduction:
Formal charge: It is the electrostatic charge that would reside on an atom in a molecule or polyatomic ion if all bonding electron are shared equally between pairs of atoms.
Formal charge calculation: The formal charge for atom in a molecule or ion is calculated based on the Lewis structure of the molecule or ion by following the given equation below:
- Number of valence electrons
- Number of non-bonding electrons
- Number of bonding electrons
Explanation of Solution
The formal charges can be calculated as follows.
For resonance structure A is given below,
Formal charge on nitrogen
Formal charge on nitrogen
Formal charge on oxygen can be calculated as follows.
For resonance structure B is given below,
Formal charge on nitrogen
Formal charge on nitrogen
Formal charge on oxygen can be calculated as follows.
For resonance structure C, is given below,
Formal charge on nitrogen
Formal charge on nitrogen
Formal charge on oxygen can be calculated as follows.
(c)
![Check Mark](/static/check-mark.png)
Interpretation:
From the resonance structure drawn, the most reasonable structure has to be identified.
Concept Introduction:
Formal charge: It is the electrostatic charge that would reside on an atom in a molecule or polyatomic ion if all bonding electron are shared equally between pairs of atoms.
Formal charge calculation: The formal charge for atom in a molecule or ion is calculated based on the Lewis structure of the molecule or ion by following the given equation below:
- Number of valence electrons
- Number of non-bonding electrons
- Number of bonding electrons
Resonance structures:
A molecule or ion which show more than structure but none of them are accurately correct show the known property of that molecule, and can lie between the canonical structure is known as resonance or canonical or contributing structure.
Explanation of Solution
The three resonance structure is drawn
- (a) The formal charges can be calculated as follows.
For resonance structure A
Formal charge on nitrogen
Formal charge on nitrogen
Formal charge on oxygen can be calculated as follows.
For resonance structure B
Formal charge on nitrogen
Formal charge on nitrogen
Formal charge on oxygen can be calculated as follows.
For resonance structure C
Formal charge on nitrogen
Formal charge on nitrogen
Formal charge on oxygen can be calculated as follows.
Thus from the formal charge given above, the Structure B is most reasonable
Want to see more full solutions like this?
Chapter 8 Solutions
Chemistry & Chemical Reactivity
- H2(g) + I2(g) ⇔ 2HI(g) Using the above equilibrium, find the equilibrium concentration of H2 if the intial concentration of both H2 and I2 are 2.0. K at this temperature is 55.64.arrow_forwardfind K, the equilibrium constant, if the inital concentration of SO3 is 0.166 M, and the equilibrium concentration of O2 is 0.075 M. 2SO3 (g) ⇌ 2SO2 (g) + O2 (g)arrow_forwardQ4: Rank the relative nucleophilicity of halide ions in water solution and DMF solution, respectively. F CI Br | Q5: Determine which of the substrates will and will not react with NaSCH3 in an SN2 reaction to have a reasonable yield of product. NH2 Br Br Br OH Brarrow_forward
- Q7: Rank the following groups in order of basicity, nucleophilicity, and leaving group ability. a) H₂O, OH, CH3COOT b) NH3, H₂O, H₂Sarrow_forwardQ8: Rank the following compounds in order of increasing reactivity in a nucleophilic substitution reaction with CN as the nucleophile. Br A B NH2 LL F C D OH CI LLI E Q9: Complete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d). a) H "Cl D + -OCH 3 Page 3 of 5arrow_forwardQ10: (a) Propose a synthesis of C from A. (b) Propose a synthesis of C from B. Br Br ...\SCH 3 A B Carrow_forward
- 9: Complete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d).arrow_forwardComplete the missing entities for following reactions (e.g., major product(s), reactants, and/or solvents) for the SN2 reactions to occur efficiently. Include curved-arrow mechanism for reactions a) to d).arrow_forwardQUESTION 3: Provide the synthetic steps that convert the starting material into the product (no mechanism required). HO OH NH CH3 multiple steps 요요 H3Carrow_forward
- Q6: Predict the effect of the changes given on the rate of the reaction below. CH3OH CH3Cl + NaOCH3 → CH3OCH3 + NaCl a) Change the substrate from CH3CI to CH31: b) Change the nucleophile from NaOCH 3 to NaSCH3: c) Change the substrate from CH3CI to (CH3)2CHCI: d) Change the solvent from CH3OH to DMSO.arrow_forwardQ3: Arrange each group of compounds from fastest SN2 reaction rate to slowest SN2 reaction rate. a) CI Cl فيكم H3C-Cl A B C D Br Br b) A B C Br H3C-Br Darrow_forwardQ2: Group these solvents into either protic solvents or aprotic solvents. Acetonitrile (CH3CN), H₂O, Acetic acid (CH3COOH), Acetone (CH3COCH3), CH3CH2OH, DMSO (CH3SOCH3), DMF (HCON(CH3)2), CH3OHarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)