
Concept explainers
(a)
Interpretation:
The reactants that will form
Concept Introduction:
Combination reactions/Synthesis reactions: In these reactions, the reactant combines to form a single product. This type of reaction occurs between either two elements, an element and a compound or two compounds. It is recognized easily because it involves two reactants and only a single product.
Example: The product for the combination reaction of magnesium oxide and carbon dioxide is magnesium carbonate. The completed equation is,
Single displacement reactions: A reaction where an element in a compound is replaced by another element is called single displacement reaction or a substitution reaction. It generally involves between a dilute solution of an acid and a metal.
Example: The product for the single displacement reaction of reaction of zinc and hydrogen bromide is zinc bromide and hydrogen. The balanced reaction is,
Double displacement reactions: This type of reactions occurs when the cation and the anions switch between two reactants to form new products. In order for the reaction to occur, one of the products is usually a solid precipitate, a gas or a molecular compound.
Example: The product of the reaction between nitric acid and calcium sulphide is gaseous hydrogen sulphide and calcium nitrate. The completed equation is,
Decomposition reactions: Decomposition reactions are the opposite of a combination reaction because decomposition reaction involves the breaking apart of a substance into simpler substances. Such a reaction is easy to recognize because there is one reactant and more than one product.
Example: The reaction of sodium chlorate to sodium chloride and oxygen is decomposition reaction. The balanced reaction is,
(a)

Answer to Problem 28PE
The reactants that will form
The balanced reaction is,
The reaction is a single displacement reaction.
Explanation of Solution
The reactants that will react to form the products nickel (II) chloride and lead are nickel and lead (II) nitrate. The chemical equation is written as,
The above reaction is self-balanced.
The reaction of nickel with lead (II) nitrate is a single displacement reaction because nickel is more reactive than lead, so it will displace lead from lead (II) nitrate and forms nickel (II) nitrate and metallic lead.
(b)
Interpretation:
The reactants that will form
Concept Introduction:
Refer to part (a).
(b)

Answer to Problem 28PE
The reactants that will form
The balanced reaction is,
The reaction is a synthesis/combination reaction.
Explanation of Solution
The reactants that will react to form the products magnesium hydroxide are magnesium oxide and water. The chemical equation is written as,
The above reaction is self-balanced.
The reaction of magnesium oxide with water to form magnesium hydroxide is a synthesis reaction because two reactants are combined to form single product.
(c)
Interpretation:
The reactants that will form
Concept Introduction:
Refer to part (a).
(c)

Answer to Problem 28PE
The reactant that will form
The balanced equation is,
The reaction is decomposition reaction.
Explanation of Solution
The reactant that will form the product
The above reaction is unbalanced. The balanced equation is,
The reaction of mercury (II) oxide to form mercury and oxygen is a decomposition reaction because a single reactant results in the formation of two products.
(d)
Interpretation:
The reactants that will form
Concept Introduction:
Refer to part (a).
(d)

Answer to Problem 28PE
The reactants that will form
The balanced equation is,
The reaction of lead (II) chloride and ammonium carbonate is a double displacement reaction.
Explanation of Solution
The reactants that will form
The above reaction is unbalanced. The balanced equation is,
The reaction of lead (II) chloride and ammonium carbonate to give lead (II) carbonate and ammonium chloride is a double displacement reaction because the cations are interchanged with each other to form new products.
Want to see more full solutions like this?
Chapter 8 Solutions
FOUND.OF COLLEGE CHEMISTRY
- 4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardIII O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward
- 3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forwardWhat is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forward
- Use the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





