CONNECT IA GENERAL ORGANIC&BIO CHEMISTRY
CONNECT IA GENERAL ORGANIC&BIO CHEMISTRY
4th Edition
ISBN: 9781260562620
Author: SMITH
Publisher: MCG
Question
Book Icon
Chapter 8, Problem 21P
Interpretation Introduction

(a)

Interpretation:

The mixture whose particle size is 1.5×107 m should be classified into either solution colloid or suspension.

Concept introduction:

The solution is defined as usually a homogenous mixture of two liquids whose particle size is less than 1 nm.

The colloids are the class of mixtures that have particles size much greater than the solutions. They can be clearly distinguished because of the presence of particles that constitute the dispersed phase of the colloidal systems and render them opaque. Butter milk is an example of colloids. There are various subcategories of colloids such as sol, foam, aerosol, emulsions. The particle size of colloids lies in the range of 109107 m.

The heterogeneous mixtures are essentially those mixtures that have non-uniform composition. The average particle size of heterogeneous mixture or suspension is more than 1 μm . The suspension is subclass of heterogeneous mixture whose particles are large and do not dissolve into the solvent to give a uniform composition.

Expert Solution
Check Mark

Answer to Problem 21P

The mixture whose particle size is 1.5×107 m is a colloid.

Explanation of Solution

The colloids are the class of mixtures that have particles size much greater than the solutions. The particle size of colloids lies in the range of 109107 m . Therefore, the mixture whose particle size is 1.5×107 m is a colloid.

Interpretation Introduction

(b)

Interpretation:

The mixture whose particle size is 2×105 m should be classified into either solution colloid or suspension.

Concept introduction:

The solution is defined as usually a homogenous mixture of two liquids whose particle size is less than 1 nm.

The colloids are the class of mixtures that have particles size much greater than the solutions. They can be clearly distinguished because of the presence of particles that constitute the dispersed phase of the colloidal systems and render them opaque. Butter milk is an example of colloids. There are various subcategories of colloids such as sol, foam, aerosol, emulsions. The particle size of colloids lies in the range of 109107 m.

The heterogeneous mixtures are essentially those mixtures that have non-uniform composition. The average particle size of heterogeneous mixture or suspension is more than 1 μm . The suspension is subclass of heterogeneous mixture whose particles are large and do not dissolve into the solvent to give a uniform composition.

Expert Solution
Check Mark

Answer to Problem 21P

The mixture whose particle size is 2×105 m is a suspension.

Explanation of Solution

The suspension is subclass of heterogeneous mixture whose particles are large and are usually more than 1 μm . The mixture whose particle size is 2×105 m is larger than 1 μm . Therefore, the mixture must be a suspension.

Interpretation Introduction

(c)

Interpretation:

The mixture whose particle size is 1.2×1010 m should be classified into either solution colloid or suspension.

Concept introduction:

The solution is defined as usually a homogenous mixture of two liquids whose particle size is less than 1 nm .one nanometers is equal to 109 nm.

The colloids are the class of mixtures that have particles size much greater than the solutions. They can be clearly distinguished by the presence of particles that constitute the dispersed phase of the colloidal systems and render them opaque. Butter milk is an example of colloids. There are various subcategories of colloids such as sol, foam, aerosol, emulsions.

The heterogeneous mixtures are essentially those mixtures thathave non-uniform composition. The average particle size of heterogeneous mixture is more than 1 μm . The suspension is subclass of heterogeneous mixture whose particles are large and do not dissolve into the solvent to give a uniform composition.

Expert Solution
Check Mark

Answer to Problem 21P

The mixture whose particle size is 1.2×1010 m is a solution.

Explanation of Solution

The solution is defined as a homogenous mixture whose particle size is less than 1 nm .The mixture whose particle size is 1.2×1010 m is less than 1 nm . Therefore, the mixture must be solution.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Laser. Indicate the relationship between metastable state and stimulated emission.
The table includes macrostates characterized by 4 energy levels (&) that are equally spaced but with different degrees of occupation. a) Calculate the energy of all the macrostates (in joules). See if they all have the same energy and number of particles. b) Calculate the macrostate that is most likely to exist. For this macrostate, show that the population of the levels is consistent with the Boltzmann distribution. macrostate 1 macrostate 2 macrostate 3 ε/k (K) Populations Populations Populations 300 5 3 4 200 7 9 8 100 15 17 16 0 33 31 32 DATO: k = 1,38×10-23 J K-1
Don't used Ai solution

Chapter 8 Solutions

CONNECT IA GENERAL ORGANIC&BIO CHEMISTRY

Ch. 8.3 - Use the solubility rules to predict whether the...Ch. 8.3 - Use the solubility rules for ionic compounds to...Ch. 8.4 - Why does a soft drink become "flat" faster when it...Ch. 8.4 - Predict the effect each change has on the...Ch. 8.5 - A commercial mouthwash contains 4.3 g of ethanol...Ch. 8.5 - What is the weight/volume percent concentration of...Ch. 8.5 - Prob. 8.6PPCh. 8.5 - Prob. 8.7PPCh. 8.5 - A drink sold in a health food store contains 0.50%...Ch. 8.5 - Prob. 8.12PCh. 8.5 - What is the concentration in parts per million of...Ch. 8.6 - Prob. 8.10PPCh. 8.6 - Prob. 8.13PCh. 8.6 - Prob. 8.11PPCh. 8.6 - Prob. 8.12PPCh. 8.6 - How many grams of NaCl are contained in each of...Ch. 8.6 - How many milliliters of a 0.25 M sucrose solution...Ch. 8.7 - What is the concentration of a solution formed by...Ch. 8.7 - If the solution of A+B- in X is diluted, which...Ch. 8.7 - Prob. 8.15PPCh. 8.7 - Prob. 8.16PCh. 8.8 - What is the boiling point of a solution prepared...Ch. 8.8 - Representations A, B, and C each show an aqueous...Ch. 8.8 - Prob. 8.18PPCh. 8.8 - What is the melting point of a solution that is...Ch. 8.9 - Which solution in each pair exerts the greater...Ch. 8.9 - Prob. 8.19PCh. 8.9 - Consider the two aqueous solutions separated by a...Ch. 8.9 - What happens to a red blood cell when it is placed...Ch. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Which representation of molecular art better shows...Ch. 8 - Classify each of the following as a solution,...Ch. 8 - Classify each of the following as a solution,...Ch. 8 - Prob. 27PCh. 8 - Label each diagram as a strong electrolyte, weak...Ch. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - Consider a mixture of two substances shown in blue...Ch. 8 - Which diagram (C or D) best represents what occurs...Ch. 8 - If the solubilityofKClin 100 mL of H2O is 34 g at...Ch. 8 - If the solubilityofsucrosein 100 mL of H2O is 204...Ch. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Using the ball-and-stick model for methanol...Ch. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - How is the solubility of helium gas in water...Ch. 8 - Use the solubility rules listed in Section 8.3B to...Ch. 8 - Use the solubility rules listed in Section 8.3B to...Ch. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - Prob. 56PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - How would you use a 250-mL volumetric flask to...Ch. 8 - How would you use a 250-mLvolumetric flask to...Ch. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - What is the molarity of a 20.0% (v/v) aqueous...Ch. 8 - Prob. 67PCh. 8 - Prob. 68PCh. 8 - Prob. 69PCh. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - Prob. 72PCh. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 75PCh. 8 - Prob. 76PCh. 8 - Prob. 77PCh. 8 - Representations A (containing 1.0 mol ofNaCl) and...Ch. 8 - What is the boiling point of a solution that...Ch. 8 - Prob. 80PCh. 8 - If 150 g of ethylene glycol (C2H6O2) is added to...Ch. 8 - Prob. 82PCh. 8 - Prob. 83PCh. 8 - Prob. 84PCh. 8 - Which solution in each pair has the higher melting...Ch. 8 - Prob. 86PCh. 8 - A flask contains two compartments (A and B) with...Ch. 8 - A flask contains two compartments (A and B) with...Ch. 8 - The molecular art illustrates a red blood cell in...Ch. 8 - Prob. 90PCh. 8 - Prob. 91PCh. 8 - Explain why more sugar dissolves in a cup of hot...Ch. 8 - If the concentration of glucose in the blood is...Ch. 8 - Prob. 94PCh. 8 - Mannitol, a carbohydrate, is supplied as a 25%...Ch. 8 - A patient receives 750 ml, of a 10.% (w/v) aqueous...Ch. 8 - Explain why a cucumber placed in a concentrated...Ch. 8 - Explain why a cucumber placed in a concentrated...Ch. 8 - Prob. 99PCh. 8 - Prob. 100PCh. 8 - Prob. 101PCh. 8 - Prob. 102PCh. 8 - The therapeutic concentration—the concentration...Ch. 8 - Prob. 104CP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning