EBK STRUCTURAL ANALYSIS
EBK STRUCTURAL ANALYSIS
6th Edition
ISBN: 9780357030974
Author: KASSIMALI
Publisher: VST
bartleby

Concept explainers

Question
Book Icon
Chapter 8, Problem 1P
To determine

Draw the influence lines for the vertical reactions at supports A and C.

Draw the influence lines for the shear and bending moment at point B.

Expert Solution & Answer
Check Mark

Explanation of Solution

Calculation:

Apply a 1 k unit moving load at a distance of x from left end A.

Sketch the free body diagram of beam as shown in Figure 1.

EBK STRUCTURAL ANALYSIS, Chapter 8, Problem 1P , additional homework tip  1

Refer Figure 1.

Find the equation of support reaction (Ay) at A using equilibrium equation:

Take moment about point C.

Consider moment equilibrium at point C.

Consider clockwise moment as positive and anticlockwise moment as negative

Sum of moment at point C is zero.

ΣMC=0Ay(30)1(30x)=0Ay(30)30+x=030Ay=30xAy=1x30 (1)

Find the equation of support reaction (Cy) at C using equilibrium equation:

Apply vertical equilibrium equation of forces.

Consider upward force as positive (+) and downward force as negative ().

Ay+Cy=1

Substitute 1x30 for Ay.

1x30+Cy=1Cy=11+x30Cy=x30 (2)

Consider Equation (1).

Find the value of influence line ordinate of reaction Ay at support A.

Substitute 0 for x in Equation (1).

Ay=1030=1k/k

Similarly calculate the influence line ordinate of reaction Ay for different value of x and summarize the result in Table 1.

x (ft)Ay(k/k)
01
150.5
300

Draw the influence line diagram for the vertical reactions at support A using Table 1 as shown in Figure 2.

EBK STRUCTURAL ANALYSIS, Chapter 8, Problem 1P , additional homework tip  2

Consider Equation (2).

Find the influence line ordinate of reaction Cy at support C.

Substitute 30 for x in Equation (2).

Cy=3030=1

Similarly calculate the influence line ordinate of reaction Cy for different value of x and summarize the result in Table 2.

x (ft)Cy(k/k)
00
150.5
301

Draw the influence line diagram for the vertical reactions at support C using Table 2 as shown in Figure 3.

EBK STRUCTURAL ANALYSIS, Chapter 8, Problem 1P , additional homework tip  3

Find the equation of shear force at B of portion AB (0x<15ft).

Sketch the free body diagram of the section AB as shown in Figure 4.

EBK STRUCTURAL ANALYSIS, Chapter 8, Problem 1P , additional homework tip  4

Refer Figure 4.

Apply equilibrium equation of forces.

Consider upward force as positive (+) and downward force as negative ().

ΣFy=0

AySB1=0SB=Ay1

Substitute 1x30 for Ay.

SB=1x301=x30

Find the equation of shear force at B of portion BC (15ft<x30ft).

Sketch the free body diagram of the section BC as shown in Figure 5.

EBK STRUCTURAL ANALYSIS, Chapter 8, Problem 1P , additional homework tip  5

Refer Figure 5.

Apply equilibrium equation of forces.

Consider upward force as positive (+) and downward force as negative ().

ΣFy=0

SB1+Cy=0SB=1Cy

Substitute x30 for Cy.

SB=1x30

Thus, the equations of the influence line for SB are,

SB=x30 0x<15ft (3)

SB=1x30 15ft<x30ft (4)

Find the value of influence line ordinate of shear force at various points of x using the Equations (3) and (4) and summarize the value as in Table 3.

x (ft)SB(k/k)
01
1512
15+12
300

Draw the influence lines for the shear force at point B using Table 3 as shown in Figure 6.

EBK STRUCTURAL ANALYSIS, Chapter 8, Problem 1P , additional homework tip  6

Refer Figure 4.

Consider clockwise moment as positive and anticlockwise moment as negative.

Find the equation of moment at B of portion AB (0x<15ft).

MB=Ay(15)(1)(15x)

Substitute 1x30 for Ay.

MB=(1x30)(15)(1)(15x)=15x215+x=x2

Refer Figure 5.

Consider clockwise moment as negative and anticlockwise moment as positive.

Find the equation of moment at B of portion BC (15ft<x30ft).

MB=Cy(15)(1)[15(30x)]=15Cy15+(30x)=15Cy+15x

Substitute x30 for Cy.

MB=15(x30)+15x=x2+15x=15x2

Thus, the equations of the influence line for MB are,

MB=x2 0x<15ft (5)

MB=15x2 15ft<x30ft (6)

Find the value of influence line ordinate of moment at various points of x using the Equations (5) and (6) and summarize the value as in Table 4.

x (ft)MB (k-ft/k)
00
157.5
300

Draw the influence lines for the moment at point B using Table 4 as shown in Figure 7.

EBK STRUCTURAL ANALYSIS, Chapter 8, Problem 1P , additional homework tip  7

Therefore, the influence lines for the vertical reactions at supports A and C and the influence lines for the shear and bending moment at point B are drawn.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Vehicles begin to arrive at an amusement park entrance at 8:00 A.M. at a rate of 1000veh/h. Some of these vehicles have electronic identifiers that allow them to enter the park immediately, beginning at 8:00 A.M., without stopping (they are billed remotely). All vehicles without such identifiers stop at a single processing booth, but they wait in line until it opens at 8:10 A.M. Once open, the operator processes vehicles at μ(t) = 8 + 0.5t [where μ(t) is in vehicles per minute and t is in minutes after 8:10 A.M.]. An observer notes that at 8:25 there are exactly 20 vehicles in the queue. What percent of arriving vehicles have electronic identifiers and what is the total delay (from the 8:00 A.M. until the queue clears) for those vehicles without the electronic identifiers (assume D/D/1 queuing)?
1. For truss given in a figure below, determine reactions, and forces in all truss members. De- termine forces using two methods independently: (a) method of joints, and (b) method of sections. Compare your results and verify that your solutions are accurate. Assume that force F = 10kN. 2m 2m 2m ▼F ▼F 4m ▼F 4m
1) Determine if the existing sedimentation basins are sufficient to accommodate the projected future capacity. If not, design upgrades to the sedimentation basins. A) Current Capacity: 22.5 MGD B) Future Capacity: 34.5 MGD for 110,000 residents C) If not, design upgrades to the sedimentation basins. 2) Specify the design flow rate, the type of basin (circular vs. rectangular) 3) Specify the basin dimensions (length, width, water depth or diameter and water depth). 4) Specify the dimensions of the launders (if applicable) and the length of the weir.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Structural Analysis
    Civil Engineering
    ISBN:9781337630931
    Author:KASSIMALI, Aslam.
    Publisher:Cengage,
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,