
In addition to the key words, you should also be able to define the following terms:
Within-subjects design
Between-subjects design
Independent-measures design
Random assignment
Variance within treatments, or variance within groups
Differential attrition
Diffusion
Compensatory equalization
Compensatory rivalry
Resentful demoralization
Single-factor two-group design, or two-group design
Single-factor multiple-group design

To explain:
Explain the given terms.
Explanation of Solution
Solution:
Between subjects:
This is the case when for each unique combination of the independent factors there are different subjects assigned to them. There are different set of subjects in each cell.
Within subjects:
This is the case when the same set of subjects is experimented in two or more different unique combination of factors. Thus when the subjects are repeated in different levels of the factors, it generates a within subject design.
Example:
- Suppose a research is done about the effect of training on employees. There are two training modules. 10 employees are assigned to each module. Thus there are total 20 employees who participate in this research.
- These 20 employees are scored before the training and then randomly assigned to the two different training modules. After the training is the done, the same 20 employees re scored again.
- In this entire research, the score serves as the response variable. There are two independent variables involved: time and training. There are two levels of time: before and after and there are two levels of training: module A and module B.
- The subjects assigned to the factor time before and after are same. Thus it should be within-subjects
- The subjects assigned to the factor training: module A and module B, are different. Thus it should be between-subjects.
Independent measures design:
An independent measures design is a research method in which several trial groups are used and participants are only in one group. Each participant is only in one factor of the independent variable during the experiment.
Random assignment:
Random assignment is a technique for placing participants to different groups in an experiment using randomization. This can be done using flipping the coin or by using random numbers. This ensures every participant has an equal chance of being selected in any group and each group is equivalent.
Variance within treatments or variance within groups:
The variance due to the differences in scores within individual treatment group is called Variance within treatments or variance within groups.
Differential attrition:
Attrition is the loss of subjects/experimental units from a sample. It occurs when an analysis does not include a subjects/experimental units who were randomly assigned. For example, 50 experimental units were there in the sample but in follow-up study, only 40 experimental units were available. To calculate differential attrition, you need Attrition for the intervention group and Attrition for the comparison group. The differential attrition is the absolute difference between these two attritions.
Diffusion:
Sometimes the treatment and control group participants can speak with each other. The threat is that a few parts of the exploratory jolt are passed on from the treatment group to the control group; that is, there is a swap of information between the groups, which influences the measures of the control group. If so, the control group may not be a genuine control group. Thus, the scores on the dependent variable that is being estimated will probably be similar between the groups. This is known as diffusion, coming about because of a trade of data between groups.
Compensatory equalization:
Compensatory equalization refers to an observable fact in medical Trials and Intervention Studies in which comparison groups not obtaining the preferred treatment are provided with compensations that make the comparison groups more identical than initially planned.
Compensatory rivalry:
In experimental research designs where there is a treatment and control group, experimental units can sometimes become viable when not included in the treatment group. As a result, they exert extra effort, which may get better score on the dependent variable for the control group compared with regular conditions. This can happen when there are two treatment groups and no control group, so long as one of the groups is getting a less striking treatment. It is known as compensatory rivalry.
Resentful demoralization:
Resentful demoralization can happen in experimental research designs when experimental units are not assigned to the treatment group. This is not generally the case, above all where there are no negative outcomes linked with control group. Though, there are instances where being assigned to the control group can be assumed to be negative, leading to feelings of anger, demoralization, resentment, neglect, amongst other negative feelings.
- Demoralization is a threat to internal validity when it:
- Results in increased withdraw rates because participants simply surrender, mainly amongst control group members, creating comparable troubles to experimental mortality; and/or
- The dissimilarity in the scores on the dependent variable between the two (or more) groups is increased compared with what would have been likely.
Single-factor two-group design or two group design:
A two-group design is when a researcher divides experimental units into two groups and then compares the outcome. The two groups usually consist of a control group, who does not get the treatment, and a treatment group, who does get the treatment.
Single-factor multiple-group design:
A multiple-group design compares three or more levels or amounts of an independent variable. A multiple-group design can have a control group and two or more experimental groups. We can compare three, four, five, or even more differing levels or amounts of an independent variable.
Want to see more full solutions like this?
Chapter 8 Solutions
Research Methods for the Behavioral Sciences (MindTap Course List)
- (a) Test the hypothesis. Consider the hypothesis test Ho = : against H₁o < 02. Suppose that the sample sizes aren₁ = 7 and n₂ = 13 and that $² = 22.4 and $22 = 28.2. Use α = 0.05. Ho is not ✓ rejected. 9-9 IV (b) Find a 95% confidence interval on of 102. Round your answer to two decimal places (e.g. 98.76).arrow_forwardLet us suppose we have some article reported on a study of potential sources of injury to equine veterinarians conducted at a university veterinary hospital. Forces on the hand were measured for several common activities that veterinarians engage in when examining or treating horses. We will consider the forces on the hands for two tasks, lifting and using ultrasound. Assume that both sample sizes are 6, the sample mean force for lifting was 6.2 pounds with standard deviation 1.5 pounds, and the sample mean force for using ultrasound was 6.4 pounds with standard deviation 0.3 pounds. Assume that the standard deviations are known. Suppose that you wanted to detect a true difference in mean force of 0.25 pounds on the hands for these two activities. Under the null hypothesis, 40 = 0. What level of type II error would you recommend here? Round your answer to four decimal places (e.g. 98.7654). Use a = 0.05. β = i What sample size would be required? Assume the sample sizes are to be equal.…arrow_forward= Consider the hypothesis test Ho: μ₁ = μ₂ against H₁ μ₁ μ2. Suppose that sample sizes are n₁ = 15 and n₂ = 15, that x1 = 4.7 and X2 = 7.8 and that s² = 4 and s² = 6.26. Assume that o and that the data are drawn from normal distributions. Use απ 0.05. (a) Test the hypothesis and find the P-value. (b) What is the power of the test in part (a) for a true difference in means of 3? (c) Assuming equal sample sizes, what sample size should be used to obtain ẞ = 0.05 if the true difference in means is - 2? Assume that α = 0.05. (a) The null hypothesis is 98.7654). rejected. The P-value is 0.0008 (b) The power is 0.94 . Round your answer to four decimal places (e.g. Round your answer to two decimal places (e.g. 98.76). (c) n₁ = n2 = 1 . Round your answer to the nearest integer.arrow_forward
- Consider the hypothesis test Ho: = 622 against H₁: 6 > 62. Suppose that the sample sizes are n₁ = 20 and n₂ = 8, and that = 4.5; s=2.3. Use a = 0.01. (a) Test the hypothesis. Round your answers to two decimal places (e.g. 98.76). The test statistic is fo = i The critical value is f = Conclusion: i the null hypothesis at a = 0.01. (b) Construct the confidence interval on 02/022 which can be used to test the hypothesis: (Round your answer to two decimal places (e.g. 98.76).) iarrow_forward2011 listing by carmax of the ages and prices of various corollas in a ceratin regionarrow_forwardس 11/ أ . اذا كانت 1 + x) = 2 x 3 + 2 x 2 + x) هي متعددة حدود محسوبة باستخدام طريقة الفروقات المنتهية (finite differences) من جدول البيانات التالي للدالة (f(x . احسب قيمة . ( 2 درجة ) xi k=0 k=1 k=2 k=3 0 3 1 2 2 2 3 αarrow_forward
- 1. Differentiate between discrete and continuous random variables, providing examples for each type. 2. Consider a discrete random variable representing the number of patients visiting a clinic each day. The probabilities for the number of visits are as follows: 0 visits: P(0) = 0.2 1 visit: P(1) = 0.3 2 visits: P(2) = 0.5 Using this information, calculate the expected value (mean) of the number of patient visits per day. Show all your workings clearly. Rubric to follow Definition of Random variables ( clearly and accurately differentiate between discrete and continuous random variables with appropriate examples for each) Identification of discrete random variable (correctly identifies "number of patient visits" as a discrete random variable and explains reasoning clearly.) Calculation of probabilities (uses the probabilities correctly in the calculation, showing all steps clearly and logically) Expected value calculation (calculate the expected value (mean)…arrow_forwardif the b coloumn of a z table disappeared what would be used to determine b column probabilitiesarrow_forwardConstruct a model of population flow between metropolitan and nonmetropolitan areas of a given country, given that their respective populations in 2015 were 263 million and 45 million. The probabilities are given by the following matrix. (from) (to) metro nonmetro 0.99 0.02 metro 0.01 0.98 nonmetro Predict the population distributions of metropolitan and nonmetropolitan areas for the years 2016 through 2020 (in millions, to four decimal places). (Let x, through x5 represent the years 2016 through 2020, respectively.) x₁ = x2 X3 261.27 46.73 11 259.59 48.41 11 257.96 50.04 11 256.39 51.61 11 tarrow_forward
- If the average price of a new one family home is $246,300 with a standard deviation of $15,000 find the minimum and maximum prices of the houses that a contractor will build to satisfy 88% of the market valuearrow_forward21. ANALYSIS OF LAST DIGITS Heights of statistics students were obtained by the author as part of an experiment conducted for class. The last digits of those heights are listed below. Construct a frequency distribution with 10 classes. Based on the distribution, do the heights appear to be reported or actually measured? Does there appear to be a gap in the frequencies and, if so, how might that gap be explained? What do you know about the accuracy of the results? 3 4 555 0 0 0 0 0 0 0 0 0 1 1 23 3 5 5 5 5 5 5 5 5 5 5 5 5 6 6 8 8 8 9arrow_forwardA side view of a recycling bin lid is diagramed below where two panels come together at a right angle. 45 in 24 in Width? — Given this information, how wide is the recycling bin in inches?arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning


