
Concept explainers
Explain how

Interpretation: To explain how the sigma (s) and pi (p) bonds are similar and different.
Concept introduction: A sigma bond is formed by the axial overlap of atomic orbitalsand the pi bonds are formed by the side-to-side overlap of p-orbitals.
Answer to Problem 1E
Similarities: Both sigma and pi bonds are formed by the overlapping of orbital and these bonds are covalent bonds.
Differences: Sigma bond is the strong bond whereas pi bond is weaker in comparison to sigma bond.
Pi bond is formed by the side to side overlapping of atomic orbital whereas sigma bond is formed by the linear (end to end) overlapping of atomic orbital.
Explanation of Solution
The sigma and pi both the bonds are formed by sharing of an electron pair that is both are covalent bonds. The sigma bond is formed when two orbitals overlap axially along the internuclear axis; it is strong bond as it requires very high energy to break. The sigma bonds of molecules give the shape of a molecule as per VSEPR model. The sigma bonds can rotate but the pi bonds cannot because if a pi bond is rotated it will break.
Therefore, the similarity between sigma and pi bonds are that both are formed by the overlap of orbital and both the bonds are covalent bonds that is it involves a bond pair. The difference between sigma and pi bonds are that sigma bond is the strongest bond while pi bonds are weaker as compared to sigma bond. Sigma bond is formed by linear overlap of atomic orbital while the pi bond is formed by side-to-side overlap of atomic orbital. Sigma bond gives the shape while a pi bond gives the length of a molecule. Sigma bond is free to rotate around its axis while the pi bond cannot rotate it is locked.
Similarities: Both sigma and pi bonds are formed by the overlapping of orbital and these bonds are covalent bonds.
Differences: Sigma bond is the strong bond whereas pi bond is weaker in comparison to sigma bond.
Pi bond is formed by the side to side overlapping of atomic orbital whereas sigma bond is formed by the linear (end to end) overlapping of atomic orbital.
Want to see more full solutions like this?
Chapter 8 Solutions
Chemistry by OpenStax (2015-05-04)
Additional Science Textbook Solutions
Human Anatomy & Physiology (2nd Edition)
Chemistry: The Central Science (14th Edition)
Biology: Life on Earth with Physiology (11th Edition)
College Physics: A Strategic Approach (3rd Edition)
Campbell Essential Biology (7th Edition)
Microbiology: An Introduction
- For questions 1-4, consider the following complexes: [Co(CN)6]+, [CoCl4]², [Cr(H2O)6]²+ 2. Draw the corresponding d-orbital splitting for each of the complexes; predict the spin- state (low-spin/high spin) for each of the complexes (if applicable); explain your arguments. Calculate the crystal field stabilization energy for each complex (in Ao or At). (6 points)arrow_forwardFor questions 1-4, consider the following complexes: [Co(CN)6]4, [COC14]², [Cr(H2O)6]²+ 1. Assign oxidation number to the metal, then indicate d-electron count. (3 points)arrow_forwardUsing iodometry I want to titrate a sodium thiosulfate solution and I use 15 mL. If I have 50 mL of a 0.90 M copper solution and KI, what will be the molarity of sodium thiosulfate?arrow_forward
- For Raman spectroscopy/imaging, which statement is not true regarding its disadvantages? a) Limited spatial resolution. b) Short integration time. c) A one-dimensional technique. d) Weak signal, only 1 in 108 incident photons is Raman scattered. e) Fluorescence interference.arrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c. (Please provide a full derivation of the equation for x from the equation for I). d) Calculate x for the 1645 cm-1 bandarrow_forwardI need help with the follloaingarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





