
Concept explainers
Effectof cycle length when saturation flow rates at

Answer to Problem 17P
Explanation of Solution
Given information:
Repeat
Shows a detailed layout of the phasing system and the intersection geometry used.
Calculation:
Equivalent hourly flow for north approach at left turn is given by,
Equivalent hourly flow
Peak hour volume
Peak hour factor
Substitute the values in equation
Calculate for other approaches like left turn, right turn and through movement in
Approach | North | South | East | East |
Left turn | ||||
Through movement | ||||
Right turn |
Calculate the critical volume for other approaches like left turn, right turn and through movement in
Left to north approach is left turn is
Through movement is
Approach | North | South | East | East |
Left turn | ||||
Through movement |
For the saturation flow rates at
Similarly calculate the saturation flow rates for other approaches in
Approach | saturation flow rates,
|
Through lanes | |
Through right lanes | |
Left lanes | |
Left through lanes | |
Left through right lanes |
Maximum value of the ratios of approach flow using formula,
Maximum value of ratios of approach flow to saturation flow to all lanes
Flow on lane groups
Saturation flow on lane group
Substitute the values in equation
Calculate for other
Approach | Phase | Phase | Phase | Phase |
Sum of critical ratio is given by,
Total lost time is given by,
Total lost time
Number of phases
Lost time for phase
Total all red time
Substitute the values in equation
Cycle length is given by,
Total effective green time is given by,
Allocated green time for phase
Allocated green time for other phases is given in the table
Phase | Allocated green time in sec |
Minimum green time for phase
Crosswalk length
Average speed of pedestrians
Number of pedestrians crossing during an interval
Substitute the values in equation
Minimum Green time for other phases is given Table
Phase | Minimum green time in sec |
From the Table
Sum of green and yellow time is given by,
Total cycle length is given by,
Conclusion:
Therefore by increasingsaturation flow rates at
Want to see more full solutions like this?
Chapter 8 Solutions
Traffic and Highway Engineering
- Physical properties of six flame-retardant fabric samples were investigated in an article. Use the accompanying data and a 0.05 significance level to determine whether a linear relationship exists between stiffness x (mg-cm) and thickness y (mm). x y 8.08 24.33 12.39 6.99 23.97 35.64 0.25 0.68 0.30 0.28 0.82 0.57 State the appropriate null and alternative hypotheses. ○ Ho: p = 0 H₂: pO ○ Hop = 0 Hap #0 Compute the value of the sample correlation coefficient, r. Round your answer to four decimal places. Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to three decimal places.) P-value = State the conclusion in the problem context. O Fail to reject Ho. The data indicates that the population correlation coefficient differs from 0. Fail to reject Ho. The data does not indicate that the population correlation coefficient differs from 0. Reject Ho. The data indicates that the population correlation coefficient differs…arrow_forward1-Define a cartesion system 2 identify the structure's supports and the type of structure (2D) or 3D 3-If the structure has more than one element dismember the structure and draw free body diagram(show all actions and reactions) on each element independently 4- Determine the type of suports 5- show the unkown supports reactions with any assumed direction but you cannot change the assumed force direction once you dicede 6-In a common joint, you can dicide on the force direction in one element, however, in the other one you need to follow the Newton'ns 3rd law and shoe the opposite direction 7- if you have multiple actions forces in the system, find force components for each foce independently use Sin/Cos/Tan functions to find forces components in two perpendicular directions 8- Add forces in each direction since they are paralled forces Rx=fx Ry=fy Rz= fyarrow_forward- - A study reports data on the effects of the drug tamoxifen on change in the level of cortisol-binding globulin (CBG) of patients during treatment. With age = x and ACBG = y, summary values are n = 26, Ex, = 1613, Σ(x, x)² = 3756.96, Ey, = 281.9, (y, v)² = 465.34, and Exy, = 16,709. (a) Compute a 90% CI for the true correlation coefficient p. (Round your answers to four decimal places.) (b) Test Ho: p =-0.5 versus Ha: p< -0.5 at level 0.05. Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to four decimal places.) P-value = State the conclusion in the problem context. Fail to reject Ho. There is evidence that p < -0.5. Reject Ho. There is no evidence that p < -0.5. Reject Ho. There is evidence that p < -0.5. Fail to reject Ho. There is no evidence that p < -0.5. (c) In a regression analysis of y on x, what proportion of variation in change of cortisol-binding globulin level could be explained by variation in…arrow_forward
- The authors of a paper presented a correlation analysis to investigate the relationship between maximal lactate level x and muscular endurance y. The accompanying data was read from a plot in the paper. 1,410 1,465 1,470 1,515 2,190 x 390 740 760 810 860 1,035 1,190 1,240 1,290 у 3.90 4.10 4.80 5.10 3.90 3.60 6.20 6.78 7.65 4.85 7.90 4.35 6.70 9.00 S = 2,619,058.929, S = 39.0467, S xx yy 7,588.061. A scatter plot shows a linear pattern. ху (a) Test to see whether there is a positive correlation between maximal lactate level and muscular endurance in the population from which this data was selected. (Use α = 0.05.) State the appropriate null and alternative hypotheses. O Ho: P = 0 H₂: p 0 Compute the value of the sample correlation coefficient, r. (Round your answer to four decimal places.) Calculate the test statistic and determine the P-value. (Round your test statistic to one decimal place and your P-value to three decimal places.) t P-value = State the conclusion in the problem…arrow_forwardProcedure: 1- Define your Cartesian system. 2- Identify the structure's supports and the type of structure (2D) or 3D 3- If the structure has more than one element dismember the structure and draw free body diagram (show all actions and reactions) on each element independently. Tip: Pulley is a member Rope is not an element because it is flexible, but it shows the force (substitute it with a force) If the Structure has one element draw free body diagram for the element. Tips to show forces on the free body diagram: 3.1- Determine the type of the supports 3.2- Show the unknown support reactions with any assumed direction, BUT you cannot change the assumed force direction once you decide. 3.3- In a common joint, you can decide on the force direction in one element, however, in the other one you need to follow the Newton's 3rd law and show the opposite direction. 3.4- If you have multiple action forces in the system, find force components for each force independently. Use Sin/Cos/Tan…arrow_forwardProcedure: 1- Define your Cartesian system. 2- Identify the structure's supports and the type of structure (2D) or 3D 3- If the structure has more than one element dismember the structure and draw free body diagram (show all actions and reactions) on each element independently. Tip: Pulley is a member Rope is not an element because it is flexible, but it shows the force (substitute it with a force) If the Structure has one element draw free body diagram for the element. Tips to show forces on the free body diagram: 3.1- Determine the type of the supports 3.2- Show the unknown support reactions with any assumed direction, BUT you cannot change the assumed force direction once you decide. 3.3- In a common joint, you can decide on the force direction in one element, however, in the other one you need to follow the Newton's 3rd law and show the opposite direction. 3.4- If you have multiple action forces in the system, find force components for each force independently. Use Sin/Cos/Tan…arrow_forward
- Procedure: 1- Define your Cartesian system. 2- Identify the structure's supports and the type of structure (2D) or 3D 3- If the structure has more than one element dismember the structure and draw free body diagram (show all actions and reactions) on each element independently. Tip: Pulley is a member Rope is not an element because it is flexible, but it shows the force (substitute it with a force) If the Structure has one element draw free body diagram for the element. Tips to show forces on the free body diagram: 3.1- Determine the type of the supports 3.2- Show the unknown support reactions with any assumed direction, BUT you cannot change the assumed force direction once you decide. 3.3- In a common joint, you can decide on the force direction in one element, however, in the other one you need to follow the Newton's 3rd law and show the opposite direction. 3.4- If you have multiple action forces in the system, find force components for each force independently. Use Sin/Cos/Tan…arrow_forwardProcedure: 1- Define your Cartesian system. 2- Identify the structure's supports and the type of structure (2D) or 3D 3- If the structure has more than one element dismember the structure and draw free body diagram (show all actions and reactions) on each element independently. Tip: Pulley is a member Rope is not an element because it is flexible, but it shows the force (substitute it with a force) If the Structure has one element draw free body diagram for the element. Tips to show forces on the free body diagram: 3.1- Determine the type of the supports 3.2- Show the unknown support reactions with any assumed direction, BUT you cannot change the assumed force direction once you decide. 3.3- In a common joint, you can decide on the force direction in one element, however, in the other one you need to follow the Newton's 3rd law and show the opposite direction. 3.4- If you have multiple action forces in the system, find force components for each force independently. Use Sin/Cos/Tan…arrow_forwardThe Turbine Oil Oxidation Test (TOST) and the Rotating Bomb Oxidation Test (RBOT) are two different procedures for evaluating the oxidation stability of steam turbine oils. An article reported the accompanying observations on x = TOST time (hr) and y = RBOT time (min) for 12 oil specimens. TOST 4200 3600 3750 3625 4050 3100 RBOT 370 340 375 305 350 210 TOST 4670 RBOT 450 4500 395 3500 285 2900 3750 3350 260 345 285 (a) Calculate the value of the sample correlation coefficient. (Round your answer to four decimal places.) r = Interpret the value of the sample correlation coefficient. The value of r indicates that there is a strong, positive linear relationship between TOST and RBOT. The value of r indicates that there is a strong, negative linear relationship between TOST and RBOT ○ The value of r indicates that there is a weak, negative linear relationship between TOST and RBOT. O The value of r indicates that there is a weak, positive linear relationship between TOST and RBOT. (b) How…arrow_forward
- Using the conjugate beam method to determine the slop and vertical deflection at B. Take E=200GPa, I =70x10^8mm4, a=7m and w=16kN/marrow_forwardusing the conjugate beam method to determine the slop and vertical deflection at B. Take E=200GPa, I =70x10^8mm4, a=7m and w=16kN/marrow_forwardWhat is the flow velocity of water in a 12" concrete sewer pipe (Manning's n = 0.013, and assume n is variable with depth) at a slope of 2%, flowing partially full with a flow depth of 3"? Express your answer in ft/s and round to the nearest 0.1.arrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,

