Fundamentals of Thermal-Fluid Sciences
Fundamentals of Thermal-Fluid Sciences
5th Edition
ISBN: 9780078027680
Author: Yunus A. Cengel Dr., Robert H. Turner, John M. Cimbala
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 138P

(a)

To determine

The rate of heat transfer in the heat exchanger.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The mass flow rate of ethylene glycol (m˙) is 2 kg/s.

The specific heat of ethylene glycol at constant pressure (cp) is 2.56kJ/kgK.

The entry temperature of ethylene glycol (T1) is 80 C.

The exit temperature of ethylene glycol (T2) is 40 C.

The specific heat of water at constant pressure (cp) is 4.18kJ/kgK.

The entry temperature of water (T3) is 20 C.

The exit temperature of water (T4) is 55 C.

Calculation:

For the steady flow system, rate of change in internal energy of the system is zero.

ΔE˙system=0

Write the equation for the energy balance equation for closed system.

  E˙inE˙out=ΔE˙systemE˙inE˙out=0m˙h1+Q˙in=m˙h2Q˙in=m˙(h2h1)=m˙cp(T2T1)        (I)

Here, rate of net energy transfer into the control volume is E˙in, rate of net energy transfer exit from the control volume is E˙out and rate of change in internal energy of system is ΔE˙system,

Refer Table A-3, “properties of common liquids table”, select the specific heat at constant pressure (cp) for ethylene glycol substance as 2.56kJ/kgK.

The rate of heat transfer from the water must be equal to the rate of heat transfer to the ethylene glycol.

  Q˙in=Q˙outQ˙out=m˙cp(T1T2)

  Q˙out=(2kg/s)(2.56kJ/kgK)((80+273)K(40+273)K)=204.8kJ/s(1kW1kJ/s)=204.8kW

Thus, the rate of heat transfer in the heat exchanger is 204.8 kW_.

(b)

To determine

The rate of entropy generation in the heat exchanger.

(b)

Expert Solution
Check Mark

Explanation of Solution

Refer Table A-3, “Properties of common liquids table”, note down the specific heat at constant pressure (cp) for water substance as 4.18 kJ/kgK.

Calculate mass flow rate of water using the rate of heat from the geothermal water.

  Q˙in=m˙watercp(T4T3)204.8kJ/s=m˙water(4.18kJ/kgK)((55+273)K(20+273)K)m˙water=204.8146.3=1.4kg/s

Write the expression for the entropy balance in the heat exchanger.

  S˙inS˙out+S˙gen=ΔS˙system        (II)

Here, rate of net input entropy is S˙in, rate of net output entropy is S˙out, rate of entropy generation is S˙gen, and rate of change of entropy of the system is ΔS˙system.

Substitute S˙in=m˙1s1+m˙3s3, S˙out=m˙2s2+m˙4s4 and ΔS˙system=0 in Equation (II).

  m˙1s1+m˙3s3(m˙2s2+m˙4s4)+S˙gen=0m˙1s1+m˙3s3m˙2s2m˙4s4+S˙gen=0S˙gen=m˙glycols1m˙waters3+m˙glycols2+m˙waters4S˙gen=m˙glycol(s2s1)+m˙water(s4s3)

  S˙gen=m˙glycolcpln(T2T1)+m˙watercpln(T4T3)

  S˙gen={(2kg/s)(2.56kJ/kgK)ln((40°C)(80°C))+(1.4kg/s)(4.18kJ/kgK)ln((55°C)(20°C))}S˙gen={(2kg/s)(2.56kJ/kgK)ln((40+273)K(80+273)K)+(1.4kg/s)(4.18kJ/kgK)ln((55+273)K(20+273)K)}=0.0446kJ/sK(1kW1kJ/s)=0.0446kW/K

Thus, the rate of entropy generation in the heat exchanger is 0.0446kW/K_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Continuity equation A y x dx D T معادلة الاستمرارية Ly X Q/Prove that ди хе + ♥+ ㅇ? he me ze ོ༞“༠ ?
Q Derive (continuity equation)? I want to derive clear mathematics.
motor supplies 200 kW at 6 Hz to flange A of the shaft shown in Figure. Gear B transfers 125 W of power to operating machinery in the factory, and the remaining power in the shaft is mansferred by gear D. Shafts (1) and (2) are solid aluminum (G = 28 GPa) shafts that have the same diameter and an allowable shear stress of t= 40 MPa. Shaft (3) is a solid steel (G = 80 GPa) shaft with an allowable shear stress of t = 55 MPa. Determine: a) the minimum permissible diameter for aluminum shafts (1) and (2) b) the minimum permissible diameter for steel shaft (3). c) the rotation angle of gear D with respect to flange A if the shafts have the minimum permissible diameters as determined in (a) and (b).

Chapter 8 Solutions

Fundamentals of Thermal-Fluid Sciences

Ch. 8 - Prob. 11PCh. 8 - A piston–cylinder device contains superheated...Ch. 8 - The entropy of steam will (increase, decrease,...Ch. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - What three different mechanisms can cause the...Ch. 8 - A completely reversible heat engine operates with...Ch. 8 - Air is compressed by a 15-kW compressor from P1 to...Ch. 8 - Heat in the amount of 100 kJ is transferred...Ch. 8 - In Prob. 8–21, assume that the heat is transferred...Ch. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - Prob. 27PCh. 8 - Is a process that is internally reversible and...Ch. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - An insulated piston–cylinder device contains 5 L...Ch. 8 - Prob. 34PCh. 8 - Water vapor enters a turbine at 6 MPa and 400°C,...Ch. 8 - Prob. 36PCh. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 40PCh. 8 - A rigid tank contains 5 kg of saturated vapor...Ch. 8 - Prob. 42PCh. 8 - Determine the heat transfer, in kJ/kg, for the...Ch. 8 - Calculate the heat transfer, in Btu/lbm, for the...Ch. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - Prob. 49PCh. 8 - Prob. 50PCh. 8 - Prob. 51PCh. 8 - 2-kg of saturated water vapor at 600 kPa are...Ch. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - A piston–cylinder device contains 5 kg of steam at...Ch. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - Prob. 60PCh. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - Prob. 67PCh. 8 - Prob. 68PCh. 8 - An ideal gas undergoes a process between two...Ch. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - Which of the two gases—helium or...Ch. 8 - Air is expanded from 2000 kPa and 500°C to 100 kPa...Ch. 8 - What is the difference between the entropies of...Ch. 8 - Prob. 75PCh. 8 - Prob. 76PCh. 8 - Prob. 77PCh. 8 - Prob. 78PCh. 8 - Air is compressed steadily by a 5-kW compressor...Ch. 8 - Prob. 81PCh. 8 - A mass of 25 lbm of helium undergoes a process...Ch. 8 - Prob. 84PCh. 8 - Prob. 85PCh. 8 - Air at 3.5 MPa and 500°C is expanded in an...Ch. 8 - Prob. 87PCh. 8 - Prob. 88PCh. 8 - Prob. 89PCh. 8 - Prob. 90PCh. 8 - Prob. 91PCh. 8 - Prob. 92PCh. 8 - Prob. 93PCh. 8 - Prob. 94PCh. 8 - Prob. 95PCh. 8 - Prob. 96PCh. 8 - Prob. 97PCh. 8 - Prob. 98PCh. 8 - Prob. 99PCh. 8 - Prob. 100PCh. 8 - Prob. 101PCh. 8 - Prob. 102PCh. 8 - Prob. 103PCh. 8 - Prob. 104PCh. 8 - Prob. 105PCh. 8 - Prob. 106PCh. 8 - Prob. 107PCh. 8 - Prob. 109PCh. 8 - Prob. 110PCh. 8 - Prob. 111PCh. 8 - Steam at 100 psia and 650°F is expanded...Ch. 8 - Prob. 113PCh. 8 - Prob. 114PCh. 8 - Prob. 115PCh. 8 - Prob. 116PCh. 8 - Carbon dioxide enters an adiabatic compressor at...Ch. 8 - Prob. 119PCh. 8 - Prob. 120PCh. 8 - Prob. 122PCh. 8 - Prob. 123PCh. 8 - Prob. 124PCh. 8 - The exhaust nozzle of a jet engine expands air at...Ch. 8 - An adiabatic diffuser at the inlet of a jet engine...Ch. 8 - Hot combustion gases enter the nozzle of a...Ch. 8 - Refrigerant-134a is expanded adiabatically from...Ch. 8 - Prob. 130PCh. 8 - Prob. 131PCh. 8 - Prob. 132PCh. 8 - Prob. 133PCh. 8 - Prob. 134PCh. 8 - Prob. 135PCh. 8 - Prob. 136PCh. 8 - Prob. 137PCh. 8 - Prob. 138PCh. 8 - Prob. 139PCh. 8 - Prob. 140PCh. 8 - Prob. 141PCh. 8 - Prob. 142PCh. 8 - Prob. 143PCh. 8 - Prob. 144PCh. 8 - Prob. 145PCh. 8 - Prob. 146PCh. 8 - Prob. 147PCh. 8 - Prob. 148PCh. 8 - Prob. 149PCh. 8 - Prob. 150PCh. 8 - Prob. 151PCh. 8 - Prob. 152PCh. 8 - Prob. 153PCh. 8 - Prob. 154PCh. 8 - Prob. 155RQCh. 8 - Prob. 156RQCh. 8 - Prob. 157RQCh. 8 - Prob. 158RQCh. 8 - Prob. 159RQCh. 8 - Prob. 160RQCh. 8 - Prob. 161RQCh. 8 - Prob. 162RQCh. 8 - Prob. 163RQCh. 8 - Prob. 164RQCh. 8 - Prob. 165RQCh. 8 - Prob. 166RQCh. 8 - Prob. 167RQCh. 8 - Prob. 168RQCh. 8 - Prob. 169RQCh. 8 - Prob. 170RQCh. 8 - Prob. 171RQCh. 8 - Prob. 172RQCh. 8 - Prob. 173RQCh. 8 - Determine the work input and entropy generation...Ch. 8 - Prob. 175RQCh. 8 - Prob. 176RQCh. 8 - Prob. 177RQCh. 8 - Prob. 178RQCh. 8 - Prob. 180RQCh. 8 - Prob. 181RQCh. 8 - Prob. 182RQCh. 8 - A 1200-W electric resistance heating element whose...Ch. 8 - Prob. 184RQCh. 8 - Prob. 185RQCh. 8 - Prob. 186RQCh. 8 - Prob. 187RQCh. 8 - Prob. 188RQCh. 8 - Prob. 189RQCh. 8 - Prob. 190RQCh. 8 - Consider a 50-L evacuated rigid bottle that is...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY