In a tape recorder, the tape is pulled past the read-write heads at a constant speed by the drive mechanism. Consider the reel from which the tape is pulled: As the tape is pulled off, the radius of the roll of remaining tape decreases, (a) How does the torque on the reel change with time? (b) If the tape mechanism is suddenly turned on so that the tape is quickly pulled with a large force, is the tape more likely to break when pulled from a nearly full reel or from a nearly empty reel?
In a tape recorder, the tape is pulled past the read-write heads at a constant speed by the drive mechanism. Consider the reel from which the tape is pulled: As the tape is pulled off, the radius of the roll of remaining tape decreases, (a) How does the torque on the reel change with time? (b) If the tape mechanism is suddenly turned on so that the tape is quickly pulled with a large force, is the tape more likely to break when pulled from a nearly full reel or from a nearly empty reel?
Solution Summary: The author analyzes how torque decreases with time, and determines when the tape breaks when pulled from nearly full reel.
In a tape recorder, the tape is pulled past the read-write heads at a constant speed by the drive mechanism. Consider the reel from which the tape is pulled: As the tape is pulled off, the radius of the roll of remaining tape decreases, (a) How does the torque on the reel change with time? (b) If the tape mechanism is suddenly turned on so that the tape is quickly pulled with a large force, is the tape more likely to break when pulled from a nearly full reel or from a nearly empty reel?
You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have
Question 2 options:
sped up at perihelion
sped up at aphelion
slowed down at perihelion
slowed down at aphelion
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.