Two window washers. Bob and Joe, are on a 3.00-m-long, 345-N scaffold supported by two cables attached to its ends. Bob weighs 750 N and stands 1.00 m from the left end, as shown in Figure P8.82. Two meters from the left end is the 500-N washing equipment. Joe is 0.500 m from the right end and weighs 1 000 N. Given that the scaffold is in rotational and translational equilibrium , what are the forces on each cable? Figure P8.82
Two window washers. Bob and Joe, are on a 3.00-m-long, 345-N scaffold supported by two cables attached to its ends. Bob weighs 750 N and stands 1.00 m from the left end, as shown in Figure P8.82. Two meters from the left end is the 500-N washing equipment. Joe is 0.500 m from the right end and weighs 1 000 N. Given that the scaffold is in rotational and translational equilibrium , what are the forces on each cable? Figure P8.82
Solution Summary: The author explains how to determine the forces on the left and right cables. The scaffold itself is in rotational as well as translational equilibrium.
Two window washers. Bob and Joe, are on a 3.00-m-long, 345-N scaffold supported by two cables attached to its ends. Bob weighs 750 N and stands 1.00 m from the left end, as shown in Figure P8.82. Two meters from the left end is the 500-N washing equipment. Joe is 0.500 m from the right end and weighs 1 000 N. Given that the scaffold is in rotational and translational equilibrium, what are the forces on each cable?
Certain types of particle detectors can be used to reconstruct the tracks left by unstable, fast-moving sub-atomic particles. Assume
that a track with a length of L=2.97 mm in the laboratory frame of reference has been observed. Further assume that you
determined from other detector data that the particle moved at a speed of L=0.910 ⚫ c, also in the laboratory frame of reference. c
denotes the speed of light in vacuum. What proper lifetime would you determine for this particle from the data given?
T= 4.0
S
generated worksheet
While cruising down University Boulevard you are stopped by a cop who states that you ran a red traffic light. Because you don't
want to pay the stiff fine, you are attempting a physics defense. You claim that due to the relativistic Doppler effect, the red color of
the light λ=616 nm appeared green '=531 nm to you. The cop makes a quick calculation of his own and rejects your defense.
How fast, in terms of your speed u divided by the speed of light in vacuum c, would you have to drive to justify your claim? Note
that the speed u is taken to be a positive quantity.
U 4.0
C
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.