PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 10P
Determine the angle ϕ at which the applied force P should act on the pipe so that the magnitude of P is as small as possible for pulling the pipe up the incline. What is the corresponding value of P? The pipe weighs W and the slope α is known. Express the answer in terms of the angle of kinetic friction, θ=tan−1 μk.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
=
The smooth pin P has a mass of 80 g. It is attached
to an elastic cord extending from 0 to P and, due to the
slotted arm guide, moves along the horizontal circular path
r = (0.8 sin ) m. If the cord has a stiffness k 30 kN/m
and an unstretched length of 0.25 m, determine the force of
the guide and the normal force of the circular path on the
pin when 0 = 60°. The guide has a constant angular velocity
è = 5 rad/s.
T
P
ė = 5 rad/s
0.
The figure shows a bar in equilibrium position resting on the floor at point A and on the wall at point B. If the mass of the bar is m and the angle it makes with the floor is θ = π/6, find the magnitudes of the frictional and normal forces at points A and B.
Find the degree(s) of freedom and the type of constraint. Show using the principal of virtual work: m2 = γm1/2 where γ is the coefficient of friction.
Chapter 8 Solutions
PEARSON ETEXT ENGINEERING MECH & STATS
Ch. 8 - F81. Determine the friction developed between the...Ch. 8 - F82. Determine the minimum force P to prevent the...Ch. 8 - Prob. 3FPCh. 8 - F84. If the coefficient of static friction at...Ch. 8 - F85. Determine the maximum force P that can be...Ch. 8 - F86. Determine the minimum coefficient of static...Ch. 8 - F87. Blocks A, B, and C have weights of 50 N, 25...Ch. 8 - F88. If the coefficient of static friction at all...Ch. 8 - Prob. 9FPCh. 8 - Determine the maximum force P the connection can...
Ch. 8 - The mine car and its contents have a total mass of...Ch. 8 - Prob. 4PCh. 8 - The automobile has a mass of 2 Mg and center of...Ch. 8 - The automobile has a mass of 2 Mg and canter of...Ch. 8 - Prob. 9PCh. 8 - Determine the angle at which the applied force P...Ch. 8 - Prob. 12PCh. 8 - The car has a mass of 1.6 Mg and center of mass at...Ch. 8 - The log has a coefficient of state friction of, s...Ch. 8 - The spool of wire having a weight of 300 Ib rests...Ch. 8 - The spool of wire having a weight of 300 Ib rests...Ch. 8 - Prob. 20PCh. 8 - The uniform thin pole has a weight of 30 Ib and a...Ch. 8 - The uniform pole has a weight of 30 Ib and a...Ch. 8 - The friction pawl is pinned at A and rests against...Ch. 8 - Two blocks A and B have a weight of 10 Ib and 6...Ch. 8 - Two blocks A and B have a weight of 10 Ib and 6...Ch. 8 - Determine the smallest force P that must be...Ch. 8 - The man having a weight of 200 Ib pushes...Ch. 8 - The uniform hoop of weight W is subjected to the...Ch. 8 - Determine the maximum horizontal force P that can...Ch. 8 - Determine the minimum force P needed to push the...Ch. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Determine the smallest couple moment that can be...Ch. 8 - If P=250 N, determine the required minimum...Ch. 8 - Determine the minimum applied force P required to...Ch. 8 - Prob. 67PCh. 8 - Prob. 68PCh. 8 - Prob. 71PCh. 8 - Prob. 72PCh. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 81PCh. 8 - Determine the horizontal force P that must be...Ch. 8 - A 180-lb farmer tries to restrain the cow from...Ch. 8 - The 100-lb boy at A is suspended from the cable...Ch. 8 - Prob. 87PCh. 8 - Determine the force P that must be applied to the...Ch. 8 - Prob. 93PCh. 8 - Prob. 98PCh. 8 - Prob. 99PCh. 8 - Blocks A and B have a mass of 7 kg and 10 kg,...Ch. 8 - The uniform bar AB is supported by a rope that...Ch. 8 - Prob. 102PCh. 8 - A 10-kg cylinder D, which is attached to a small...Ch. 8 - Prob. 106PCh. 8 - The collar bearing uniformly supports an axial...Ch. 8 - The collar bearing uniformly supports an axial...Ch. 8 - The floor-polishing machine rotates at a constant...Ch. 8 - Prob. 110PCh. 8 - Prob. 111PCh. 8 - Prob. 116PCh. 8 - The collar fits loosely around a fixed shaft that...Ch. 8 - Prob. 119PCh. 8 - Prob. 120PCh. 8 - Solve Prob. 8-120 if the force P is applied...Ch. 8 - Prob. 122PCh. 8 - Prob. 123PCh. 8 - Prob. 125PCh. 8 - The bell crank fits loosely into a 0.5-in-diameter...Ch. 8 - The bell crank fits loosely into a 0.5-in-diameter...Ch. 8 - Prob. 129PCh. 8 - R81. The uniform 20-lb ladder rests on the rough...Ch. 8 - R82. The uniform 60-kg crate C rests uniformly on...Ch. 8 - R83. A 35-kg disk rests on an inclined surface for...Ch. 8 - Prob. 4RPCh. 8 - Prob. 6RPCh. 8 - Prob. 7RPCh. 8 - The hand cart has wheels with a diameter of 80 mm....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 70 lb-bag of rice is being pulled by a person by applying a force F at an angle 0. The force required to drag the bag is F(0) = (70p)/(µsine + cose) where u = 0.35 is the coefficient of friction. Determine the maximum F by creating a vector for the angle with elements ranging from 5° to 35° and spacing of 0.01 and use the built-in function max. The maximum F isarrow_forward3 - please show the complete solution, thanks!arrow_forwardDetermine the greatest angle 0 so that the ladder does not slip when it supports the man (of the mass of m) in the position shown. The coefficient of static friction at A and B is Hs. Ignore the weight of the ladder. Use m = 93 kg, Hs = 0.48, a=2.5m, b=0.25m, g = 9.81 m/s?. b a e to the nearest integer (deg) =arrow_forward
- The 113-lb force P is applied to the 250-lb crate, which is stationary before the force is applied. Determine the magnitude and direction of the friction force F exerted by the horizontal surface on the crate. The friction force is positive if to the right, negative if to the left. Assume μ = 0.41, μ = 0.32. Answer: F= H₂ Hk lbarrow_forward1. If the spring is compressed a distance 6 and the coefficient of static friction between the tapered stub S and the slider A is sA, determine the horizontal force P needed to move the slider forward.The stub is free to move without friction within the fixed collar C. The coefficient of static friction between A and surface B is µAB. Neglect the weights of the slider and stub. Given: 8 = 60 mm HsA = 0.5 HAB = = 0.4 N k = 300 e = 30 deg Barrow_forward1. A man pushes the table weighing 350 N. If the coefficient of friction between the floor and table is 0.35, determine the magnitude of force so that the table impend to move. = 30 0 Farrow_forward
- 2 m 50 N/m P3 The wedge is used to level the member. Determine the horizontal force P that must be applied to begin to push the wedge forward. The coefficient of static friction between the wedge and the two surfaces of contact is H, =0.25. Neglect the weight of the wedge. B 10° 0.8 marrow_forwardThe 114-lb force P is applied to the 220-lb crate, which is stationary before the force is applied. Determine the magnitude and direction of the friction force F exerted by the horizontal surface on the crate. The friction force is positive if to the right, negative if to the left. Assume μ = 0.47, Mk = 0.36. P Answer: F = i H₂ Hk lbarrow_forwardThe winch on the truck is used to hoist the garbage bin onto the bed of the truck. If the loaded bin has a weight of 7500 lb and center of gravity at G, determine the force in the cable needed to begin the lift. The coefficients of static friction at A and B are μA = 0.32 and μB = 0.28, respectively. Neglect the height of the support at A.arrow_forward
- The 113-lb force P is applied to the 250-lb crate, which is stationary before the force is applied. Determine the magnitude and direction of the friction force F exerted by the horizontal surface on the crate. The friction force is positive if to the right, negative if to the left. Assume μ = 0.41, μ = 0.32. P Answer: F = i H lbarrow_forwardA chain having a length L and weight W rests on a street for which the coefficient of static friction is us. If a crane is used to hoist the chain, determine the force P it applies to the chain if the length of chain remaining on the ground begins to slip when the horizontal component is Px. What length of chain remains on the ground? Given: L = 20 ft W = 8lb/ft = 0.2 us= : 10 lb Px =arrow_forwardFind the smallest distance d for which the hook will remain at rest when acted on by the force P. Neglect the weight of the hook, and assume that the vertical wall is frictionless.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Column buckling; Author: Amber Book;https://www.youtube.com/watch?v=AvvaCi_Nn94;License: Standard Youtube License