MASTERPHYS:KNIGHT'S PHYSICS ACCESS+WKB
4th Edition
ISBN: 9780135245033
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 10CQ
A golfer starts with the club over her head and swings it to reach maximum speed as it contacts the ball. Halfway through her swing, when the golf club is parallel to the ground, does the acceleration vector of the club head point (a) straight down, (b) parallel to the ground, approximately toward the golfer's shoulders, (c) approximately toward the golfer's feet, or (d) toward a point above the golfer's head? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
he Xanthar mothership locks onto an enemy cruiser with its tractor beam (see the figure below); each ship is at rest in deep space with no propulsion following a devastating battle. The mothership is at x = 0 when its tractor beams are first engaged, a distance d = 245 xiles from the cruiser. Determine the x-position in xiles (measured from x = 0) of the two spacecraft when the tractor beam has pulled them together. Model each spacecraft as a point particle with the mothership of mass M = 180 xons and the cruiser of mass m = 10.0 xons.
A circular mothership of mass M has its center at x = 0. A smaller spacecraft of mass m is to the right of the mothership at a distance d from the ship when the tractor beam is engaged.
A soccer player stands atop a hill shaped like a perfect hemisphere with radius R = 8.00 m. The player kicks a ball, initially
at rest at the top of the hill, such that the ball's velocity V is horizontal, as shown in the figure below.
-Rx
(a) Find the minimum initial speed of the ball (in m/s) if it is never to hit the hill after being kicked.
m/s
(b) Using this initial speed, find the distance x (in m) from the base of the hill where the ball hits the ground.
m
A car initially traveling eastward turns north by traveling in a circular path at uniform speed as in the figure below. The length of the arc ABC is 223 m, and the car
completes the turn in 40.0 s.
0 35.0⁰
x
(a) What is the acceleration when the car is at B located at an angle of 35.0°? Express your answer in terms of the unit vectors î and ĵ.
-0.233
X
First find the magnitude of the acceleration; then work out the components of the vector. m/s² 1 + 0.163
Note that 223 is one quarter of the circumference of the circular path. m/s² ĵ
(b) Determine the car's average speed.
m/s
(c) Determine its average acceleration during the 40.0-s interval.
m/s² î+
m/s² j
X
Chapter 8 Solutions
MASTERPHYS:KNIGHT'S PHYSICS ACCESS+WKB
Ch. 8 - In uniform circular motion, which of the following...Ch. 8 - A car runs out of gas while driving down a hill....Ch. 8 - FIGURE Q8.3 is a bird's-eye view of particles on...Ch. 8 - Tarzan swings through the jungle on a massless...Ch. 8 - FIGURE Q8.5 shows two balls of equal mass moving...Ch. 8 - Ramon and Sally are observing a toy car speed up...Ch. 8 - A jet plane is flying on a level course at...Ch. 8 - A small projectile is launched parallel to the...Ch. 8 - 9. You can swing a ball on a string in a vertical...Ch. 8 - A golfer starts with the club over her head and...
Ch. 8 - As a science fair project, you want to launch an...Ch. 8 - A 500 g model rocket is on a cart that is rolling...Ch. 8 - A 4.0 × 1010 kg asteroid is heading directly...Ch. 8 - A 55 kg astronaut who weighs 180 N on a distant...Ch. 8 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 8 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 8 - A 200 g block on a 50-cm-long string swings in a...Ch. 8 - In the Bohr model of the hydrogen atom, an...Ch. 8 - Suppose the moon were held in its orbit not by...Ch. 8 - 10. A highway curve of radius 500 m is designed...Ch. 8 - It is proposed that future space stations create...Ch. 8 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 8 - Mass m1on the frictionless table of FIGURE EX8.13...Ch. 8 - A satellite orbiting the moon very near the...Ch. 8 - What is free-fall acceleration toward the sun at...Ch. 8 - 16. A 9.4 × 1021 kg moon orbits a distant planet...Ch. 8 - Communications satellites are placed in circular...Ch. 8 - A car drives over the top of a hill that has a...Ch. 8 - The weight of passengers on a roller coaster...Ch. 8 - A roller coaster car crosses the top of a circular...Ch. 8 - The normal force equals the magnitude of the...Ch. 8 - A student has 65-cm-long arms. What is the minimum...Ch. 8 - While at the county fair, you decide to ride the...Ch. 8 - A 500 g ball swings in a vertical circle at the...Ch. 8 - A 500 g ball moves in a vertical circle on a...Ch. 8 - A heavy ball with a weight of 100 N (m = 10.2 kg)...Ch. 8 - A toy train rolls around a horizontal...Ch. 8 - 28. A new car is tested on a 200-m-diameter track....Ch. 8 - An 85,000 kg stunt plane performs a loop-the-loop,...Ch. 8 - Three cars are driving at 25 m/s along the road...Ch. 8 - Derive Equations 8.3 for the acceleration of a...Ch. 8 - 32. A 100 g bead slides along a frictionless wire...Ch. 8 - 33. Space scientists have a large test chamber...Ch. 8 - 34. A 5000 kg interceptor rocket is launched at an...Ch. 8 - Prob. 35EAPCh. 8 - 36. A rocket- powered hockey puck has a thrust of...Ch. 8 - Prob. 37EAPCh. 8 - A 2.0 kg projectile with initial velocity m/s...Ch. 8 - A 75 kg man weighs himself at the north pole and...Ch. 8 - A concrete highway curve of radius 70 m banked at...Ch. 8 - a. an object of mass m swings in horizontal circle...Ch. 8 -
42. You’ve taken your neighbor’s young child to...Ch. 8 - A 4.4-cm-diameter, 24 g plastic ball is attached...Ch. 8 - A charged particle of mass m moving with speed v...Ch. 8 - Two wires are tied to the 2.0 kg sphere shown in...Ch. 8 - Two wires are tied to the 300 g sphere shown in...Ch. 8 - A conical pendulum is formed by attaching a ball...Ch. 8 - The 10 mg bead in FIGURE P8.48 is free to slide on...Ch. 8 - In an old-fashioned amusement park ride,...Ch. 8 - The ultracentrifuge is an important tool for...Ch. 8 - In an amusement park ride called The Roundup,...Ch. 8 - 52. Suppose you swing a ball of mass m in a...Ch. 8 - A 30 g ball rolls around a 40-cm-diameter L-shaped...Ch. 8 - FIGURE P8.54 shows a small block of mass m sliding...Ch. 8 - The physics of circular motion sets an upper limit...Ch. 8 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 8 - A 60 g ball is tied to the end of a 50-cm-long...Ch. 8 - Elm Street has a pronounced dip at the bottom of a...Ch. 8 - 59. A 100 g ball on a 60-cm-long string is swung...Ch. 8 - Scientists design a new particle accelerator in...Ch. 8 - 61. A 1500 kg car starts from rest and drives...Ch. 8 - Prob. 62EAPCh. 8 - 63. A 2.0 kg ball swings in a vertical circle on...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - In Problems 64 and 65 you are given the equation...Ch. 8 - Sam (75 kg) takes off up a 50-m-high, 10°...Ch. 8 - In the absence of air resistance, a projectile...Ch. 8 - The father of Example 8.2 stands at the summit of...Ch. 8 - A small bead slides around a horizontal circle at...Ch. 8 - A 500 g steel block rotates on a steel table while...Ch. 8 - If a vertical cylinder of water (or any other...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Example 2.6, we considered a simple model for a rocket launched from the surface of the Earth. A better expression for the rockets position measured from the center of the Earth is given by y(t)=(R3/2+3g2Rt)2/3j where R is the radius of the Earth (6.38 106 m) and g is the constant acceleration of an object in free fall near the Earths surface (9.81 m/s2). a. Derive expressions for vy(t) and ay(t). b. Plot y(t), vy(t), and ay(t). (A spreadsheet program would be helpful.) c. When will the rocket be at y=4R? d. What are vy and ay when y=4R?arrow_forwardA car initially traveling eastward turns north by traveling in a circular path at uniform speed as shown in Figure P7.15. The length of the arc ABC is 235 m, and the car completes the turn in 36.0 s. (a) Determine the cars speed. (b) What is the magnitude and direction of the acceleration when the car is at point B? Figure P7.15arrow_forwardThe Xanthar mothership locks onto an enemy cruiser with its tractor beam (see the figure below); each ship is at rest in deep space with no propulsion following a devastating battle. The mothership is at x = 0 when its tractor beams are first engaged, a distance d = 195 xiles from the cruiser. Determine the x-position in xiles (measured from x = 0) of the two spacecraft when the tractor beam has pulled them together. Model each spacecraft as a point particle with the mothership of mass M = 170 xons and the cruiser of mass m = 24.0 xons.arrow_forward
- What's the answer for part A & B?arrow_forwardAn athlete rotates a 1.00-kg discus along a circular path of radius 1.06 m. The maximum speed of the discus is 20.0 m/s. Determine the magnitude of the maximum radial acceleration of the discus in m/s^2.arrow_forwardA car initially traveling eastward turns north by traveling in a circular path at uniform speed as shown in the figure below. The length of the arc ABC is 212 m, and the car completes the turn in 42.0 s X 35.00 С В (a) Determine the car's speed m/s (b) What is the magnitude and direction of the acceleration when the car is at point B? m/s2 magnitude Counterclockwise from the +x-axis directionarrow_forward
- A simple pendulum (a mass swinging at the end of a string) swings back and forth in a circular arc. What is the direction of the acceleration of the mass when it is at the ends of the swing? At the midpoint? In each case, explain how you obtain your answer.arrow_forwardThe Xanthar mothership locks onto an enemy cruiser with its tractor beam (see the figure below); each ship is at rest in deep space with no propulsion following a devastating battle. The mothership is at x = 0 when its tractor beams are first engaged, a distance d = 235 xiles from the cruiser. Determine the x-position in xiles (measured from x = 0) of the two spacecraft when the tractor beam has pulled them together. Model each spacecraft as a point particle with the mothership of mass M = 160 xons and the cruiser of mass m = 16.0 xons. HINT M m x= 0 xilesarrow_forwardA Ferris wheel with radius R=14.0m is turning about a horizontal axis through its center. The linear speed of a passenger on the roof is constant and equal to 7.80m/s. A) what is the magnitude of the passengers acceleration as she passes through the lowest point in her circular motion? B) what is the magnitude of the passengers acceleration as she passes through the highest point in her circular motion? C) how much time does it take the Ferris wheel to make one revolution?arrow_forward
- Suppose an object moves with velocity v(t) = -/4t + 9i + 5j + (4 – 2t)k meters per second, and it has initial position r(0) = 2i – 7j +k. a) Find the position function r(t). b) At the initial time, is the object moving upwards or downwards? Why? c) Find the speed function of the object at time t. d) Find the tangential component of acceleration when t = 0. %3D O Do not answer here.arrow_forwardAt its Ames Research Center, NASA uses its large “20 G” centrifuge to test the effects of very large accelerations (“hypergravity”) on test pilots and astronauts. In this device, an arm 8.84 m long rotates about one end in a horizontal plane, and an astronaut is strapped in at the other end. Suppose that he is aligned along the centrifuge’s arm with his head at the outermost end. The maximum sustained acceleration to which humans are subjected in this device is typically 12.5g. (a) How fast must the astronaut’s head be moving to experience this maximum acceleration? (b) What is the difference between the acceleration of his head and feet if the astronaut is 2.00 m tall? (c) How fast in rpm 1rev>min2 is the arm turning to produce the maximum sustained acceleration?arrow_forwardThe act of bowling a ball can be rather involved, but in its simplest form the bowler swings her arm in a roughly circular arc, releasing the ball just a moment after it passes through the bottom of the arc. By the time the ball is at the bottom of the arc, its speed is not changing anymore. A decent bowler can make the ball travel the length of the 60-ft alley in about 2.1 s. Ignore the (small) friction between the ball and the lane, so the ball travels at constant speed, once released. Calculate the speed of the ball moving across the alley when the bowler releases it? Round the final answer to the nearest whole number. In what direction is the ball accelerating when it’s at the bottom of the swing and the bowler has not yet released it? If the bowler has 2-ft-long arms, estimate the magnitude of the ball’s acceleration. Round the final answer to the nearest whole number. Estimate the total force on the 14-lb ball. Round the final answer to the nearest whole number. Estimate…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY