
Concept explainers
a) -CH3, -Br, -H, -I.
Interpretation:
To rank -CH3, -Br, -H, -I according to Cahn-Ingold-Prelog sequence rules.
Concept introduction:
According to Cahn-Ingold-Prelog sequence rules the member that ranks higher can be determined by considering the
To rank:
The substituents, -CH3, -Br, -H, -I, according to Cahn-Ingold-Prelog sequence rules.

Answer to Problem 45AP
According to Cahn-Ingold-Prelog sequence rules the substituents can be ranked in the order -I, -Br, -CH3, -H.
Explanation of Solution
The first atoms in the substituents given are I, Br, C and CH. Their atomic numbers are 53, 35, 12, 1 respectively. Based on these atomic numbers, the substituents can be ranked in the order -I, -Br, -CH3, -H.
According to the sequence rules the substituents can be ranked in the order -I, -Br, -CH3, -H.
b) -OH, -OCH3, -H, -CO2H.
Interpretation:
To rank -OH, -OCH3, -H, -CO2H according to Cahn-Ingold-Prelog sequence rules.
Concept introduction:
According to Cahn-Ingold-Prelog sequence rules the member that ranks higher can be determined by considering the atomic number of the first atom in each substituent. The atom with highest atomic number gets a higher rank. If a decision cannot be made by considering the atomic number of the first atom in each substituent then the second, third, fourth atoms can be considered until the first difference is found. Multiple bonded atoms are equivalent to the same number of single bonded atoms.
To rank:
The substituents, -OH, -OCH3, -H, -CO2H according to Cahn-Ingold-Prelog sequence rules.

Answer to Problem 45AP
According to Cahn-Ingold-Prelog sequence rules the substituents can be ranked in the order -OCH3, -OH, -CO2H, -H.
Explanation of Solution
Two groups have oxygen as first atom, third one has carbon as the first atom and the fourth one is H. Their atomic numbers are 8, 1, 12 respectively. Both -OH, -OCH3 have O as the first atom. Hence the second, third and fourth atoms to which they are bonded are to be considered. Oxygen in -OH is bonded to H, while the oxygen in -OCH3 is bonded to carbon. Hence -OCH3 ranks higher than -OH. The substituent -CO2H ranks third and -H the fourth.
According to the sequence rules the substituents can be ranked in the order -OCH3, -OH, -CO2H,-H.
c) -CO2H, -CO2CH3, -CH2OH, -CH3.
Interpretation:
To rank -CO2H, -CO2CH3, -CH2OH, -CH3 according to Cahn-Ingold-Prelog sequence rules.
Concept introduction:
The member that ranks higher can be determined by considering the atomic number of the first atom in each substituent. The atom with highest atomic number gets a higher rank. If a decision cannot be made by considering the atomic number of the first atom in each substituent then the second, third, fourth atoms can be considered until the first difference is found. Multiple bonded atoms are equivalent to the same number of single bonded atoms.
To rank:
The substituents -CO2H, -CO2CH3, -CH2OH, -CH3 according to Cahn-Ingold-Prelog sequence rules.

Answer to Problem 45AP
According to Cahn-Ingold-Prelog sequence rules the substituents can be ranked in the order -CO2CH3, -CO2H, -CH2OH, -CH3.
Explanation of Solution
The first atom in all the substituents given is C. Hence the second, third and fourth atoms to which they are bonded are to be considered. Carbon in -CO2CH3 is bonded to three oxygens(double bond) out of which one is attached to a carbon. Carbon in COOH is also bonded to three oxygen atom (double bond) out of which one is attached to a hydrogen. Carbon in –CH2OH is bonded to H, H, O. Carbon in methyl is bonded to H, H, H. Based on the atomic numbers of the differentiating atoms, the substituents can be ranked in the order -CO2CH3, -CO2H, -CH2OH,-CH3.
According to Cahn-Ingold-Prelog sequence rules the substituents can be ranked in the order -CO2CH3, -CO2H, -CH2OH,-CH3.
d) -CH3, -CH2CH3, -CH2CH2OH, -COCH3.
Interpretation:
To rank -CH3, -CH2CH3, -CH2CH2OH, -COCH3 according to Cahn-Ingold-Prelog sequence rules.
Concept introduction:
The member that ranks higher can be determined by considering the atomic number of the first atom in each substituent. The atom with highest atomic number gets a higher rank. If a decision cannot be made by considering the atomic number of the first atom in each substituent then the second, third, fourth atoms can be considered until the first difference is found. Multiple bonded atoms are equivalent to the same number of single bonded atoms.
To rank:
The substituents -CH3, -CH2CH3, -CH2CH2OH, -COCH3 according to Cahn-Ingold-Prelog sequence rules.

Answer to Problem 45AP
According to Cahn-Ingold-Prelog sequence rules the substituents can be ranked in the order -COCH3, -CH2CH2OH, -CH2CH3, -CH3.
Explanation of Solution
The first atom in all the substituents given is C. Hence the second, third and fourth atoms to which they are bonded are to be considered.
Carbon in -COCH3 is bonded to O, O(double bond), C.
Carbon in -CH2CH2OH is bonded to H, H & C attached to H, H, O.
Carbon in –CH2CH3 is bonded to H, H & C attached to three hydrogens.
Carbon in methyl is bonded to H, H, H.
Based on the atomic numbers of the differentiating atoms, the substituents can be ranked in the order -COCH3, -CH2CH2OH, -CH2CH3, -CH3.
According to Cahn-Ingold-Prelog sequence rules the substituents can be ranked in the order -COCH3, -CH2CH2OH, -CH2CH3, -CH3.
e) -CH=CH2, -CN, -CH2NH2, -CH2Br.
Interpretation:
To rank -CH=CH2, -CN, -CH2NH2, -CH2Br according to Cahn-Ingold-Prelog sequence rules.
Concept introduction:
The member that ranks higher can be determined by considering the atomic number of the first atom in each substituent. The atom with highest atomic number gets a higher rank. If a decision cannot be made by considering the atomic number of the first atom in each substituent then the second, third, fourth atoms can be considered until the first difference is found. Multiple bonded atoms are equivalent to the same number of single bonded atoms.
To rank:
The substituents -CH=CH2, -CN, -CH2NH2, -CH2Br according to Cahn-Ingold-Prelog sequence rules.

Answer to Problem 45AP
According to Cahn-Ingold-Prelog sequence rules the substituents can be ranked in the order -CH2Br, -CN, -CH2NH2, -CH=CH2.
Explanation of Solution
The first atom in all the substituents given is C. Hence the second, third and fourth atoms to which they are bonded are to be considered.
Carbon in -CH=CH2, is bonded to C, C(double bond), H.
Carbon in -CN, is bonded to three nitrogens.
Carbon in -CH2NH2 is bonded to N, H, H.
Carbon in -CH2Br is bonded to Br, H, H.
Based on the atomic numbers of the differentiating atoms, the substituents can be ranked in the order -CH2Br, -CN, -CH2NH2, -CH=CH2.
According to Cahn-Ingold-Prelog sequence rules the substituents can be ranked in the order -CH2Br, -CN, -CH2NH2, -CH=CH2.
f) -CH=CH2, -CH2CH3, -CH2OCH3, -CH2OH.
Interpretation:
To rank -CH=CH2, -CH2CH3, -CH2OCH3, -CH2OH according to Cahn-Ingold-Prelog sequence rules.
Concept introduction:
The member that ranks higher can be determined by considering the atomic number of the first atom in each substituent. The atom with highest atomic number gets a higher rank. If a decision cannot be made by considering the atomic number of the first atom in each substituent then the second, third, fourth atoms can be considered until the first difference is found. Multiple bonded atoms are equivalent to the same number of single bonded atoms.
To rank:
The substituents -CH=CH2, -CH2CH3, -CH2OCH3, -CH2OH according to Cahn-Ingold-Prelog sequence rules.

Answer to Problem 45AP
According to Cahn-Ingold-Prelog sequence rules the substituents can be ranked in the order -CH2OCH3, -CH2OH, -CH=CH2, CH2CH3.
Explanation of Solution
The first atom in all the substituents given is C. Hence the second, third and fourth atoms to which they are bonded are to be considered.
Carbon in -CH=CH2, is bonded to C, C(Double bond), H.
Carbon in -CH2CH3 is bonded to C, H, H.
Carbon in -CH2OCH3 is bonded to H, H, O attached to a carbon.
Carbon in -CH2OH is bonded to H, H, O attached to a hydrogen.
Based on the atomic numbers of the differentiating atoms, the substituents can be ranked in the order -CH2OCH3, -CH2OH, -CH=CH2, CH2CH3.
According to Cahn-Ingold-Prelog sequence rules the substituents can be ranked in the order -CH2OCH3, -CH2OH, -CH=CH2, CH2CH3.
Want to see more full solutions like this?
Chapter 7 Solutions
Student Value Bundle: Organic Chemistry, + OWLv2 with Student Solutions Manual eBook, 4 terms (24 months) Printed Access Card (NEW!!)
- A student proposes the transformation below in one step of an organic synthesis. There may be one or more reactants missing from the left-hand side, but there are no products missing from the right-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. . If the student's transformation is possible, then complete the reaction by adding any missing reactants to the left-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + T X O O лет-ле HO OH HO OH This transformation can't be done in one step.arrow_forwardDetermine the structures of the missing organic molecules in the following reaction: X+H₂O H* H+ Y OH OH Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. X Sarrow_forwardPredict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. No reaction. HO. O :☐ + G Na O.H Click and drag to start drawing a structure. XS xs H₂Oarrow_forward
- What are the angles a and b in the actual molecule of which this is a Lewis structure? H H C H- a -H b H Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal groups may have slightly different sizes. a = b = 0 °arrow_forwardWhat are the angles a and b in the actual molecule of which this is a Lewis structure? :0: HCOH a Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal that might be caused by the fact that different electron groups may have slightly different sizes. a = 0 b=0° Sarrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H OH O OH +H OH X Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structure of the missing organic molecule X. Click and drag to start drawing a structure.arrow_forward
- Identify the missing organic reactant in the following reaction: x + x O OH H* + ☑- X H+ O O Х Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H₂O) are not shown. In the drawing area below, draw the skeletal ("line") structure of the missing organic reactant X. Click and drag to start drawing a structure. Carrow_forwardCH3O OH OH O hemiacetal O acetal O neither O 0 O hemiacetal acetal neither OH hemiacetal O acetal O neither CH2 O-CH2-CH3 CH3-C-OH O hemiacetal O acetal CH3-CH2-CH2-0-c-O-CH2-CH2-CH3 O neither HO-CH2 ? 000 Ar Barrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 2 2. n-BuLi 3 Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure.arrow_forward
- Predict the products of this organic reaction: NaBH3CN + NH2 ? H+ Click and drag to start drawing a structure. ×arrow_forwardPredict the organic products that form in the reaction below: + OH +H H+ ➤ ☑ X - Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Garrow_forwardPredict the organic products that form in the reaction below: OH H+ H+ + ☑ Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. ✓ marrow_forward
