(a)
Interpretation:
The types of intermolecular forces present in
Concept Introduction:
The forces of attraction between the molecules are the forces that keep them close or bonded together and they are called intermolecular forces.
There are generally 3 types of intermolecular forces-
- London-dispersion forces- The electrons within a molecule are constantly moving and sometimes this leads to uneven distribution of electrons for a very small interval of time. This unsymmetrical distribution can distort the nearby molecule also leading to the induced dipole−induced dipole interactions between the two molecules. As all the molecules have moving electrons, thus all types of molecules exhibit these forces.
- Dipole-dipole interactions- When two dipoles (polar molecules) come nearby, then the positive end of one dipole interacts with the negative end of the other dipole or vice-versa. Such interactions are referred to as the dipole-dipole interactions.
- Hydrogen bonding-It exists when hydrogen bonded to a highly electronegative atom such as O, F or N is attracted by the lone pair on another electronegative atom.
(b)
Interpretation:
The types of intermolecular forces present in
Concept Introduction:
The forces of attraction between the molecules are the forces that keep them close or bonded together and they are called intermolecular forces.
There are generally 3 types of intermolecular forces-
- London-dispersion forces- The electrons within a molecule are constantly moving and sometimes this leads to uneven distribution of electrons for a very small interval time. This unsymmetrical distribution can distort the nearby molecule also leading to the induced dipole −induced dipole interactions between the two molecules. As all the molecules have moving electrons, thus all types of molecules exhibit these forces.
- Dipole-dipole interactions- When two dipoles (polar molecules) come nearby, then the positive end of one dipole interacts with the negative end of the other dipole or vice-versa. Such interactions are referred to as the dipole-dipole interactions.
- Hydrogen bonding-It exists when hydrogen bonded to a highly electronegative atom such as O, F or N is attracted by the lone pair on another electronegative atom.
(c)
Interpretation:
The types of intermolecular forces present in
Concept Introduction:
The forces of attraction between the molecules are the forces that keep them close or bonded together and they are called intermolecular forces.
There are generally 3 types of intermolecular forces-
- London-dispersion forces- The electrons within a molecule are constantly moving and sometimes this leads to uneven distribution of electrons for a very small interval time. This unsymmetrical distribution can distort the nearby molecule also leading to the induced dipole −induced dipole interactions between the two molecules. As all the molecules have moving electrons, thus all types of molecules exhibit these forces.
- Dipole-dipole interactions- When two dipoles (polar molecules) come nearby, then the positive end of one dipole interacts with the negative end of the other dipole or vice-versa. Such interactions are referred to as the dipole-dipole interactions.
- Hydrogen bonding-It exists when hydrogen bonded to a highly electronegative atom such as O, F or N is attracted by the lone pair on another electronegative atom.
(d)
Interpretation:
The types of intermolecular forces present in
Concept Introduction:
The forces of attraction between the molecules are the forces that keep them close or bonded together and they are called intermolecular forces.
There are generally 3 types of intermolecular forces-
- London-dispersion forces- The electrons within a molecule are constantly moving and sometimes this leads to uneven distribution of electrons for a very small interval time. This unsymmetrical distribution can distort the nearby molecule also leading to the induced dipole −induced dipole interactions between the two molecules. As all the molecules have moving electrons, thus all types of molecules exhibit these forces.
- Dipole-dipole interactions- When two dipoles (polar molecules) come nearby, then the positive end of one dipole interacts with the negative end of the other dipole or vice-versa. Such interactions are referred to as the dipole-dipole interactions.
- Hydrogen bonding-It exists when hydrogen bonded to a highly electronegative atom such as O, F or N is attracted by the lone pair on another electronegative atom.
(e)
Interpretation:
The types of intermolecular forces present in
Concept Introduction:
The forces of attraction between the molecules are the forces that keep them close or bonded together and they are called intermolecular forces.
There are generally 3 types of intermolecular forces-
- London-dispersion forces- The electrons within a molecule are constantly moving and sometimes this leads to uneven distribution of electrons for a very small interval time. This unsymmetrical distribution can distort the nearby molecule also leading to the induced dipole −induced dipole interactions between the two molecules. As all the molecules have moving electrons, thus all types of molecules exhibit these forces.
- Dipole-dipole interactions- When two dipoles (polar molecules) come nearby, then the positive end of one dipole interacts with the negative end of the other dipole or vice-versa. Such interactions are referred to as the dipole-dipole interactions.
- Hydrogen bonding-It exists when hydrogen bonded to a highly electronegative atom such as O, F or N is attracted by the lone pair on another electronegative atom.

Trending nowThis is a popular solution!

Chapter 7 Solutions
ALEKS 360 ACCESS CARD F/GEN. ORG.CHEM
- Draw the principal organic product of the following reaction.arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided structures, draw the curved arrows that epict the mechanistic steps for the proton transfer between a hydronium ion and a pi bond. Draw any missing organic structures in the empty boxes. Be sure to account for all lone-pairs and charges as well as bond-breaking and bond-making steps. 2 56°F Mostly cloudy F1 Drawing Arrows > Q Search F2 F3 F4 ▷11 H. H : CI: H + Undo Reset Done DELLarrow_forwardCalculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbons. Draw out the benzene ring structure when doing itarrow_forward
- 1) Calculate the longest and shortest wavelengths in the Lyman and Paschen series. 2) Calculate the ionization energy of He* and L2+ ions in their ground states. 3) Calculate the kinetic energy of the electron emitted upon irradiation of a H-atom in ground state by a 50-nm radiation.arrow_forwardCalculate the ionization energy of He+ and Li²+ ions in their ground states. Thannnxxxxx sirrr Ahehehehehejh27278283-4;*; shebehebbw $+$;$-;$-28283773838 hahhehdvaarrow_forwardPlleeaasseee solllveeee question 3 andd thankss sirr, don't solve it by AI plleeaasseee don't use AIarrow_forward
- Calculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbonsarrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuu, don't solve it by AI plleeaasseeearrow_forward
- Please sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





