Find a function g ( x ) of the form g ( x ) = A x 2 + B x + C whose graph contains the points (m − Δ x , f ( m − Δ x ) ) , ( m , f ( m ) ) , and ( m + Δ x , f ( m + Δ x ) ) , for the given function f ( x ) and the given values of m and Δ x . Then verify Formula (11): ∫ m − Δ x m + Δ x g ( x ) d x = Δ x 3 [ Y 0 + 4 Y 1 + Y 2 ] where Y 0 = f ( m − Δ x ) , Y 1 = f ( m ) , and Y 2 = f ( m + Δ x ) . f ( x ) = sin 2 ( π x ) ; m = 1 6 , Δ x = 1 6
Find a function g ( x ) of the form g ( x ) = A x 2 + B x + C whose graph contains the points (m − Δ x , f ( m − Δ x ) ) , ( m , f ( m ) ) , and ( m + Δ x , f ( m + Δ x ) ) , for the given function f ( x ) and the given values of m and Δ x . Then verify Formula (11): ∫ m − Δ x m + Δ x g ( x ) d x = Δ x 3 [ Y 0 + 4 Y 1 + Y 2 ] where Y 0 = f ( m − Δ x ) , Y 1 = f ( m ) , and Y 2 = f ( m + Δ x ) . f ( x ) = sin 2 ( π x ) ; m = 1 6 , Δ x = 1 6
whose graph contains the points
(m
−
Δ
x
,
f
(
m
−
Δ
x
)
)
,
(
m
,
f
(
m
)
)
,
and
(
m
+
Δ
x
,
f
(
m
+
Δ
x
)
)
,
for the given function
f
(
x
)
and the given values of
m
and
Δ
x
.
Then verify Formula (11):
∫
m
−
Δ
x
m
+
Δ
x
g
(
x
)
d
x
=
Δ
x
3
[
Y
0
+
4
Y
1
+
Y
2
]
where
Y
0
=
f
(
m
−
Δ
x
)
,
Y
1
=
f
(
m
)
,
and
Y
2
=
f
(
m
+
Δ
x
)
.
3. f(7)
3. Find the domain of each of the following functions.
1
1. f(x)=2-6x+8
2. f(x)=√√7-x
4. A manufacturer has a monthly fixed cost of $40,000 and a production cost of $8 for each unit produced. The product sells for $12
per unit.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.