Find a function g ( x ) of the form g ( x ) = A x 2 + B x + C whose graph contains the points (m − Δ x , f ( m − Δ x ) ) , ( m , f ( m ) ) , and ( m + Δ x , f ( m + Δ x ) ) , for the given function f ( x ) and the given values of m and Δ x . Then verify Formula (11): ∫ m − Δ x m + Δ x g ( x ) d x = Δ x 3 [ Y 0 + 4 Y 1 + Y 2 ] where Y 0 = f ( m − Δ x ) , Y 1 = f ( m ) , and Y 2 = f ( m + Δ x ) . f ( x ) = 1 x ; m = 3 , Δ x = 1
Find a function g ( x ) of the form g ( x ) = A x 2 + B x + C whose graph contains the points (m − Δ x , f ( m − Δ x ) ) , ( m , f ( m ) ) , and ( m + Δ x , f ( m + Δ x ) ) , for the given function f ( x ) and the given values of m and Δ x . Then verify Formula (11): ∫ m − Δ x m + Δ x g ( x ) d x = Δ x 3 [ Y 0 + 4 Y 1 + Y 2 ] where Y 0 = f ( m − Δ x ) , Y 1 = f ( m ) , and Y 2 = f ( m + Δ x ) . f ( x ) = 1 x ; m = 3 , Δ x = 1
whose graph contains the points
(m
−
Δ
x
,
f
(
m
−
Δ
x
)
)
,
(
m
,
f
(
m
)
)
,
and
(
m
+
Δ
x
,
f
(
m
+
Δ
x
)
)
,
for the given function
f
(
x
)
and the given values of
m
and
Δ
x
.
Then verify Formula (11):
∫
m
−
Δ
x
m
+
Δ
x
g
(
x
)
d
x
=
Δ
x
3
[
Y
0
+
4
Y
1
+
Y
2
]
where
Y
0
=
f
(
m
−
Δ
x
)
,
Y
1
=
f
(
m
)
,
and
Y
2
=
f
(
m
+
Δ
x
)
.
For the following function f and real number a,
a. find the slope of the tangent line mtan
=
f' (a), and
b. find the equation of the tangent line to f at x = a.
f(x)=
2
=
a = 2
x2
a. Slope:
b. Equation of tangent line: y
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.