![Mathematics with Applications In the Management, Natural and Social Sciences (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780321931078/9780321931078_largeCoverImage.gif)
Mathematics with Applications In the Management, Natural and Social Sciences (11th Edition)
11th Edition
ISBN: 9780321931078
Author: Margaret L. Lial, Thomas W. Hungerford, John P. Holcomb, Bernadette Mullins
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 7.6, Problem 4CP
To determine
To calculate: The maximum value of the function
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
5. (a) State the Residue Theorem. Your answer should include all the conditions required
for the theorem to hold.
(4 marks)
(b) Let y be the square contour with vertices at -3, -3i, 3 and 3i, described in the
anti-clockwise direction. Evaluate
に
dz.
You must check all of the conditions of any results that you use.
(5 marks)
(c) Evaluate
L
You must check all of the conditions of any results that you use.
ཙ
x sin(Tx)
x²+2x+5
da.
(11 marks)
3. (a) Lety: [a, b] C be a contour. Let L(y) denote the length of y. Give a formula
for L(y).
(1 mark)
(b) Let UCC be open. Let f: U→C be continuous. Let y: [a,b] → U be a
contour. Suppose there exists a finite real number M such that |f(z)| < M for
all z in the image of y. Prove that
<
||, f(z)dz| ≤ ML(y).
(3 marks)
(c) State and prove Liouville's theorem. You may use Cauchy's integral formula without
proof.
(d) Let R0. Let w € C. Let
(10 marks)
U = { z Є C : | z − w| < R} .
Let f UC be a holomorphic function such that
0 < |ƒ(w)| < |f(z)|
for all z Є U. Show, using the local maximum modulus principle, that f is constant.
(6 marks)
3. (a) Let A be an algebra. Define the notion of an A-module M. When is a module M
a simple module?
(b) State and prove Schur's Lemma for simple modules.
(c) Let AM(K) and M = K" the natural A-module.
(i) Show that M is a simple K-module.
(ii) Prove that if ƒ € Endд(M) then ƒ can be written as f(m) = am, where a
is a matrix in the centre of M, (K).
[Recall that the centre, Z(M,(K)) == {a Mn(K) | ab
M,,(K)}.]
= ba for all bЄ
(iii) Explain briefly why this means End₁(M) K, assuming that Z(M,,(K))~
K as K-algebras.
Is this consistent with Schur's lemma?
Chapter 7 Solutions
Mathematics with Applications In the Management, Natural and Social Sciences (11th Edition)
Ch. 7.1 - Checkpoint 1
Graph the given...Ch. 7.1 - Prob. 2CPCh. 7.1 - Prob. 3CPCh. 7.1 - Prob. 4CPCh. 7.1 - Prob. 5CPCh. 7.1 - Checkpoint 6
Graph the feasible region of the...Ch. 7.1 - Prob. 7CPCh. 7.1 - Match the inequality with its graph, which is one...Ch. 7.1 - Match the inequality with its graph, which is one...Ch. 7.1 - Match the inequality with its graph, which is one...
Ch. 7.1 - Prob. 4ECh. 7.1 - Match the inequality with its graph, which is one...Ch. 7.1 - Match the inequality with its graph, which is one...Ch. 7.1 - Graph each of the given linear inequalities. (See...Ch. 7.1 - Graph each of the given linear inequalities. (See...Ch. 7.1 - Prob. 9ECh. 7.1 - Graph each of the given linear inequalities. (See...Ch. 7.1 - Prob. 11ECh. 7.1 - Graph each of the given linear inequalities. (See...Ch. 7.1 - Graph each of the given linear inequalities. (See...Ch. 7.1 - Graph each of the given linear inequalities. (See...Ch. 7.1 - Graph each of the given linear inequalities. (See...Ch. 7.1 - Graph each of the given linear inequalities. (See...Ch. 7.1 - Prob. 17ECh. 7.1 - Graph each of the given linear inequalities. (See...Ch. 7.1 - Prob. 19ECh. 7.1 - Graph each of the given linear inequalities. (See...Ch. 7.1 - Graph each of the given linear inequalities. (See...Ch. 7.1 - Prob. 22ECh. 7.1 - Prob. 23ECh. 7.1 - Graph each of the given linear inequalities. (See...Ch. 7.1 - Prob. 25ECh. 7.1 - Prob. 26ECh. 7.1 - Prob. 27ECh. 7.1 - Prob. 28ECh. 7.1 - Graph the feasible region for the given systems of...Ch. 7.1 - Graph the feasible region for the given systems of...Ch. 7.1 - Graph the feasible region for the given systems of...Ch. 7.1 - Prob. 32ECh. 7.1 - Graph the feasible region for the given systems of...Ch. 7.1 - Prob. 34ECh. 7.1 - Graph the feasible region for the given systems of...Ch. 7.1 - Graph the feasible region for the given systems of...Ch. 7.1 - Prob. 37ECh. 7.1 - Prob. 38ECh. 7.1 - Graph the feasible region for the given systems of...Ch. 7.1 - Prob. 40ECh. 7.1 - Graph the feasible region for the given systems of...Ch. 7.1 - Graph the feasible region for the given systems of...Ch. 7.1 - Prob. 43ECh. 7.1 - Graph the feasible region for the given systems of...Ch. 7.1 - Graph the feasible region for the given systems of...Ch. 7.1 - Graph the feasible region for the given systems of...Ch. 7.1 - Prob. 47ECh. 7.1 - Prob. 48ECh. 7.1 - Prob. 49ECh. 7.1 - Prob. 50ECh. 7.1 - Prob. 51ECh. 7.1 - 52. Business A manufacturer of electric shavers...Ch. 7.1 - Prob. 53ECh. 7.1 - Prob. 54ECh. 7.1 - Prob. 55ECh. 7.1 - Prob. 56ECh. 7.2 - Checkpoint 1
Suppose the objective function in...Ch. 7.2 - Prob. 2CPCh. 7.2 - Prob. 3CPCh. 7.2 - Checkpoint 4
Use the region of feasible solutions...Ch. 7.2 - Prob. 5CPCh. 7.2 - Prob. 6CPCh. 7.2 - Exercises 1–6 show regions of feasible solutions....Ch. 7.2 - Exercises 1–6 show regions of feasible solutions....Ch. 7.2 - Exercises 1–6 show regions of feasible solutions....Ch. 7.2 - Exercises 1–6 show regions of feasible solutions....Ch. 7.2 - Exercises 1–6 show regions of feasible solutions....Ch. 7.2 - Prob. 6ECh. 7.2 - Use graphical methods to solve Exercises 7–12....Ch. 7.2 - Use graphical methods to solve Exercises 7–12....Ch. 7.2 - Prob. 9ECh. 7.2 - Use graphical methods to solve Exercises 7–12....Ch. 7.2 - Use graphical methods to solve Exercises 7–12....Ch. 7.2 - Use graphical methods to solve Exercises 7–12....Ch. 7.2 - Find the minimum and maximum values of (if...Ch. 7.2 - Find the minimum and maximum values of (if...Ch. 7.2 - Find the minimum and maximum values of (if...Ch. 7.2 - Find the minimum and maximum values of (if...Ch. 7.2 - Prob. 17ECh. 7.2 - 18. Find values and that maximize subject to...Ch. 7.2 - Prob. 19ECh. 7.2 - Prob. 20ECh. 7.3 - Prob. 1CPCh. 7.3 - Prob. 2CPCh. 7.3 - Prob. 3CPCh. 7.3 - Prob. 1ECh. 7.3 - Prob. 2ECh. 7.3 - Prob. 3ECh. 7.3 - Write the constraints in Exercises 1–4 as linear...Ch. 7.3 - Prob. 5ECh. 7.3 - Solve these linear programming problems, which are...Ch. 7.3 - Prob. 7ECh. 7.3 - Solve these linear programming problems, which are...Ch. 7.3 - Prob. 9ECh. 7.3 - Prob. 10ECh. 7.3 - Prob. 11ECh. 7.3 - Solve these linear programming problems, which are...Ch. 7.3 - Prob. 13ECh. 7.3 - Solve the following linear programming problems....Ch. 7.3 - Prob. 15ECh. 7.3 - Prob. 16ECh. 7.3 - Prob. 17ECh. 7.3 - Prob. 18ECh. 7.3 - Prob. 19ECh. 7.3 - Prob. 20ECh. 7.3 - Prob. 21ECh. 7.3 - Solve the following linear programming problems....Ch. 7.3 - Prob. 23ECh. 7.3 - Prob. 24ECh. 7.3 - Prob. 25ECh. 7.3 - Prob. 26ECh. 7.3 - Prob. 27ECh. 7.3 - Prob. 28ECh. 7.3 - Prob. 29ECh. 7.4 - Prob. 1CPCh. 7.4 - Prob. 2CPCh. 7.4 - Prob. 3CPCh. 7.4 - Prob. 4CPCh. 7.4 - Prob. 5CPCh. 7.4 - Prob. 6CPCh. 7.4 - Prob. 1ECh. 7.4 - Prob. 2ECh. 7.4 - In Exercises 1–4, (a) determine the number of...Ch. 7.4 - Prob. 4ECh. 7.4 - Prob. 5ECh. 7.4 - Prob. 6ECh. 7.4 - Prob. 7ECh. 7.4 - Prob. 8ECh. 7.4 - Prob. 9ECh. 7.4 - Prob. 10ECh. 7.4 - Prob. 11ECh. 7.4 - Prob. 12ECh. 7.4 - Prob. 13ECh. 7.4 - Prob. 14ECh. 7.4 - Prob. 15ECh. 7.4 - Prob. 16ECh. 7.4 - Prob. 17ECh. 7.4 - Prob. 18ECh. 7.4 - Prob. 19ECh. 7.4 - Prob. 20ECh. 7.4 - Prob. 21ECh. 7.4 - Use the simplex method to solve Exercises...Ch. 7.4 - Prob. 23ECh. 7.4 - Prob. 24ECh. 7.4 - Prob. 25ECh. 7.4 - Prob. 26ECh. 7.4 - Prob. 27ECh. 7.4 - Prob. 28ECh. 7.4 - Prob. 29ECh. 7.4 - Prob. 30ECh. 7.4 - Prob. 31ECh. 7.4 - Prob. 32ECh. 7.4 - Use the simplex method to solve Exercises...Ch. 7.4 - Prob. 34ECh. 7.4 - Use the simplex method to solve Exercises...Ch. 7.4 - Use the simplex method to solve Exercises...Ch. 7.4 - Prob. 37ECh. 7.4 - Prob. 38ECh. 7.5 - Prob. 1CPCh. 7.5 - Prob. 1ECh. 7.5 - Prob. 2ECh. 7.5 - Prob. 3ECh. 7.5 - Set up the initial simplex tableau for each of the...Ch. 7.5 - In each of the given exercises, (a) use the...Ch. 7.5 - In each of the given exercises, (a) use the...Ch. 7.5 - In each of the given exercises, (a) use the...Ch. 7.5 - Prob. 8ECh. 7.5 - Prob. 9ECh. 7.5 - Prob. 10ECh. 7.5 - Prob. 11ECh. 7.5 - Prob. 12ECh. 7.5 - Prob. 13ECh. 7.5 - Prob. 14ECh. 7.5 - Prob. 15ECh. 7.5 - Prob. 16ECh. 7.5 - Prob. 17ECh. 7.5 - Prob. 18ECh. 7.5 - Prob. 19ECh. 7.5 - Prob. 20ECh. 7.5 - Prob. 21ECh. 7.5 - Prob. 22ECh. 7.6 - Checkpoint 1
Give the transpose of each...Ch. 7.6 - Prob. 2CPCh. 7.6 - Prob. 3CPCh. 7.6 - Prob. 4CPCh. 7.6 - Prob. 5CPCh. 7.6 - Prob. 6CPCh. 7.6 - Prob. 1ECh. 7.6 - Prob. 2ECh. 7.6 - Prob. 3ECh. 7.6 - Prob. 4ECh. 7.6 - Prob. 5ECh. 7.6 - Prob. 6ECh. 7.6 - Prob. 7ECh. 7.6 - Prob. 8ECh. 7.6 - Prob. 9ECh. 7.6 - Prob. 10ECh. 7.6 - Prob. 11ECh. 7.6 - Prob. 12ECh. 7.6 - Prob. 13ECh. 7.6 - Prob. 14ECh. 7.6 - Prob. 15ECh. 7.6 - Prob. 16ECh. 7.6 - Prob. 17ECh. 7.6 - Prob. 18ECh. 7.6 - Prob. 19ECh. 7.6 - Prob. 20ECh. 7.6 - Prob. 21ECh. 7.6 - Prob. 22ECh. 7.6 - Prob. 23ECh. 7.6 - Prob. 24ECh. 7.6 - Prob. 25ECh. 7.6 - Prob. 26ECh. 7.6 - Prob. 27ECh. 7.6 - 28. Business An animal food must provide at least...Ch. 7.6 - Prob. 29ECh. 7.6 - 30. Business Joan McKee has a part-time job...Ch. 7.6 - Prob. 31ECh. 7.6 - Prob. 32ECh. 7.6 - Prob. 33ECh. 7.6 - Prob. 34ECh. 7.7 - Prob. 1CPCh. 7.7 - Prob. 2CPCh. 7.7 - Prob. 3CPCh. 7.7 - Prob. 4CPCh. 7.7 - Prob. 5CPCh. 7.7 - Prob. 1ECh. 7.7 - Prob. 2ECh. 7.7 - Prob. 3ECh. 7.7 - Prob. 4ECh. 7.7 - Prob. 5ECh. 7.7 - Prob. 6ECh. 7.7 - Prob. 7ECh. 7.7 - Prob. 8ECh. 7.7 - Prob. 9ECh. 7.7 - Prob. 10ECh. 7.7 - Prob. 11ECh. 7.7 - Prob. 12ECh. 7.7 - Prob. 13ECh. 7.7 - Prob. 14ECh. 7.7 - Prob. 15ECh. 7.7 - Prob. 16ECh. 7.7 - Prob. 17ECh. 7.7 - Prob. 18ECh. 7.7 - Prob. 19ECh. 7.7 - Prob. 20ECh. 7.7 - Prob. 21ECh. 7.7 - Prob. 22ECh. 7.7 - Prob. 23ECh. 7.7 - Prob. 24ECh. 7.7 - Prob. 25ECh. 7.7 - Prob. 26ECh. 7.7 - Prob. 27ECh. 7.7 - Prob. 28ECh. 7.7 - Prob. 29ECh. 7.7 - Prob. 30ECh. 7.7 - Prob. 31ECh. 7.7 - Prob. 32ECh. 7.7 - Prob. 33ECh. 7.7 - Prob. 34ECh. 7.7 - Prob. 35ECh. 7.7 - Use the two-stage method to solve Exercises 33–40....Ch. 7.7 - Prob. 37ECh. 7.7 - Prob. 38ECh. 7.7 - Prob. 39ECh. 7.7 - Prob. 40ECh. 7.7 - Prob. 41ECh. 7.7 - Prob. 42ECh. 7.7 - Prob. 43ECh. 7 - Prob. 1CECh. 7 - 2. Consider preparing a stir-fry using beef, oil,...Ch. 7 - Prob. EPCh. 7 - Prob. 1RECh. 7 - Prob. 2RECh. 7 - Graph each of the given linear inequalities.
3.
Ch. 7 - Prob. 4RECh. 7 - Prob. 5RECh. 7 - Prob. 6RECh. 7 - Prob. 7RECh. 7 - Prob. 8RECh. 7 - Prob. 9RECh. 7 - Prob. 10RECh. 7 - Prob. 11RECh. 7 - Prob. 12RECh. 7 - Prob. 13RECh. 7 - Use the graphical method to solve Exercises...Ch. 7 - Use the graphical method to solve Exercises...Ch. 7 - Prob. 16RECh. 7 - Prob. 17RECh. 7 - Prob. 18RECh. 7 - 19. Finance The BlackRock Equity Dividend Fund...Ch. 7 - Prob. 20RECh. 7 - Prob. 21RECh. 7 - Prob. 22RECh. 7 - Prob. 23RECh. 7 - Prob. 24RECh. 7 - Prob. 25RECh. 7 - Prob. 26RECh. 7 - Prob. 27RECh. 7 - Prob. 28RECh. 7 - Prob. 29RECh. 7 - Prob. 30RECh. 7 - Prob. 31RECh. 7 - Prob. 32RECh. 7 - Prob. 33RECh. 7 - Prob. 34RECh. 7 - Prob. 35RECh. 7 - Prob. 36RECh. 7 - 37. When is it necessary to use the simplex method...Ch. 7 - Prob. 38RECh. 7 - 39. What kind of problem can be solved with the...Ch. 7 - 40. In solving a linear programming problem, you...Ch. 7 - Prob. 41RECh. 7 - Prob. 42RECh. 7 - Prob. 43RECh. 7 - Prob. 44RECh. 7 - Prob. 45RECh. 7 - Use the method of duals to solve these...Ch. 7 - Prob. 47RECh. 7 - Prob. 48RECh. 7 - Prob. 49RECh. 7 - Prob. 50RECh. 7 - Prob. 51RECh. 7 - Prob. 52RECh. 7 - Use the two-stage method to solve these...Ch. 7 - Prob. 54RECh. 7 - Prob. 55RECh. 7 - Prob. 56RECh. 7 - Business Solve the following maximization...Ch. 7 - Prob. 58RECh. 7 - Business Solve the following maximization...Ch. 7 - Prob. 60RECh. 7 - Prob. 61RECh. 7 - Business Solve the following minimization...Ch. 7 - Business Solve these mixed-constraint...Ch. 7 - Business Solve these mixed-constraint...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- (a) State, without proof, Cauchy's theorem, Cauchy's integral formula and Cauchy's integral formula for derivatives. Your answer should include all the conditions required for the results to hold. (8 marks) (b) Let U{z EC: |z| -1}. Let 12 be the triangular contour with vertices at 0, 2-2 and 2+2i, parametrized in the anticlockwise direction. Calculate dz. You must check the conditions of any results you use. (d) Let U C. Calculate Liz-1ym dz, (z - 1) 10 (5 marks) where 2 is the same as the previous part. You must check the conditions of any results you use. (4 marks)arrow_forward(a) Suppose a function f: C→C has an isolated singularity at wЄ C. State what it means for this singularity to be a pole of order k. (2 marks) (b) Let f have a pole of order k at wЄ C. Prove that the residue of f at w is given by 1 res (f, w): = Z dk (k-1)! >wdzk−1 lim - [(z — w)* f(z)] . (5 marks) (c) Using the previous part, find the singularity of the function 9(z) = COS(πZ) e² (z - 1)²' classify it and calculate its residue. (5 marks) (d) Let g(x)=sin(211). Find the residue of g at z = 1. (3 marks) (e) Classify the singularity of cot(z) h(z) = Z at the origin. (5 marks)arrow_forward1. Let z = x+iy with x, y Є R. Let f(z) = u(x, y) + iv(x, y) where u(x, y), v(x, y): R² → R. (a) Suppose that f is complex differentiable. State the Cauchy-Riemann equations satisfied by the functions u(x, y) and v(x,y). (b) State what it means for the function (2 mark) u(x, y): R² → R to be a harmonic function. (3 marks) (c) Show that the function u(x, y) = 3x²y - y³ +2 is harmonic. (d) Find a harmonic conjugate of u(x, y). (6 marks) (9 marks)arrow_forward
- Please could you provide a step by step solutions to this question and explain every step.arrow_forwardCould you please help me with question 2bii. If possible could you explain how you found the bounds of the integral by using a graph of the region of integration. Thanksarrow_forwardLet A be a vector space with basis 1, a, b. Which (if any) of the following rules turn A into an algebra? (You may assume that 1 is a unit.) (i) a² = a, b² = ab = ba = 0. (ii) a²=b, b² = ab = ba = 0. (iii) a²=b, b² = b, ab = ba = 0.arrow_forward
- No chatgpt pls will upvotearrow_forward= 1. Show (a) Let G = Z/nZ be a cyclic group, so G = {1, 9, 92,...,g" } with g": that the group algebra KG has a presentation KG = K(X)/(X” — 1). (b) Let A = K[X] be the algebra of polynomials in X. Let V be the A-module with vector space K2 and where the action of X is given by the matrix Compute End(V) in the cases (i) x = p, (ii) xμl. (67) · (c) If M and N are submodules of a module L, prove that there is an isomorphism M/MON (M+N)/N. (The Second Isomorphism Theorem for modules.) You may assume that MON is a submodule of M, M + N is a submodule of L and the First Isomorphism Theorem for modules.arrow_forward(a) Define the notion of an ideal I in an algebra A. Define the product on the quotient algebra A/I, and show that it is well-defined. (b) If I is an ideal in A and S is a subalgebra of A, show that S + I is a subalgebra of A and that SnI is an ideal in S. (c) Let A be the subset of M3 (K) given by matrices of the form a b 0 a 0 00 d Show that A is a subalgebra of M3(K). Ꮖ Compute the ideal I of A generated by the element and show that A/I K as algebras, where 0 1 0 x = 0 0 0 001arrow_forward
- (a) Let HI be the algebra of quaternions. Write out the multiplication table for 1, i, j, k. Define the notion of a pure quaternion, and the absolute value of a quaternion. Show that if p is a pure quaternion, then p² = -|p|². (b) Define the notion of an (associative) algebra. (c) Let A be a vector space with basis 1, a, b. Which (if any) of the following rules turn A into an algebra? (You may assume that 1 is a unit.) (i) a² = a, b²=ab = ba 0. (ii) a² (iii) a² = b, b² = abba = 0. = b, b² = b, ab = ba = 0. (d) Let u1, 2 and 3 be in the Temperley-Lieb algebra TL4(8). ገ 12 13 Compute (u3+ Augu2)² where A EK and hence find a non-zero x € TL4 (8) such that ² = 0.arrow_forwardQ1: Solve the system x + x = t², x(0) = (9)arrow_forwardCo Given show that Solution Take home Су-15 1994 +19 09/2 4 =a log суто - 1092 ж = a-1 2+1+8 AI | SHOT ON S4 INFINIX CAMERAarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259676512/9781259676512_smallCoverImage.jpg)
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134392790/9780134392790_smallCoverImage.gif)
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168024/9781938168024_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134683713/9780134683713_smallCoverImage.gif)
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337694193/9781337694193_smallCoverImage.jpg)
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259985607/9781259985607_smallCoverImage.gif)
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY
Optimization Problems in Calculus; Author: Professor Dave Explains;https://www.youtube.com/watch?v=q1U6AmIa_uQ;License: Standard YouTube License, CC-BY
Introduction to Optimization; Author: Math with Dr. Claire;https://www.youtube.com/watch?v=YLzgYm2tN8E;License: Standard YouTube License, CC-BY