
Concept explainers
Three Prisoners The famous "problem of three prisoners" is as follows.
Three men, A, B, and C, were in jail. A knew that one of them was to be set free and the other two were to be executed. But he didn't know who was the one to be spared. To the jailer who did know, A said, "Since two out of the three will be executed, it is certain that either B or C will be, at least. You will give me no information about my own chances if you give me the name of one man, B or C, who is going to be executed," Accepting this argument after some thinking, the jailer said "B will be executed." Thereupon A felt happier because now either he or C would go free, so his chance had increased from 1/3 to 1/2. Source: Cognition.
(a) Assume that initially each of the prisoners is equally likely to be set free. Assume also that if both B and C are to be executed, the jailer is equally likely to name either B or C. Show that A is wrong, and that his probability of being freed, given that the jailer says B will be executed, is still 1/3.
(b) Now assume that initially the probabilities of A, B, and C being freed are 1/4, 1/4, and 1/2, respectively. As in part (a), assume also that if both B and C are to be executed, the jailer is equally likely to name either B or C. Now show that A’s probability of being freed, given that the jailer says B will be executed, actually drops to 1/5. Discuss the reasonableness of this answer, and why this result might violate someone's intuition.

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
Finite Mathematics (11th Edition)
- d((x, y), (z, w)) = |xz|+|yw|, show that whether d is a metric on R² or not?. Q3/Let R be a set of real number and d: R² x R² → R such that -> d((x, y), (z, w)) = max{\x - zl, ly - w} show that whether d is a metric on R² or not?. Q4/Let X be a nonempty set and d₁, d₂: XXR are metrics on X let d3,d4, d5: XX → R such that d3(x, y) = 4d2(x, y) d4(x, y) = 3d₁(x, y) +2d2(x, y) d5(x,y) = 2d₁ (x,y))/ 1+ 2d₂(x, y). Show that whether d3, d4 and d5 are metric on X or not?arrow_forwardplease Solve questions by Course Name( Ordinary Differential Equations II 2)arrow_forwardBusiness discussarrow_forward
- please do Q3arrow_forwardUse the properties of logarithms, given that In(2) = 0.6931 and In(3) = 1.0986, to approximate the logarithm. Use a calculator to confirm your approximations. (Round your answers to four decimal places.) (a) In(0.75) (b) In(24) (c) In(18) 1 (d) In ≈ 2 72arrow_forwardFind the indefinite integral. (Remember the constant of integration.) √tan(8x) tan(8x) sec²(8x) dxarrow_forward
- Find the indefinite integral by making a change of variables. (Remember the constant of integration.) √(x+4) 4)√6-x dxarrow_forwardInThe Northern Lights are bright flashes of colored light between 50 and 200 miles above Earth. Suppose a flash occurs 150 miles above Earth. What is the measure of arc BD, the portion of Earth from which the flash is visible? (Earth’s radius is approximately 4000 miles.)arrow_forwardJu at © Ju 370 = x (- пье zxp = c² (2² 4 ) dx² ахе 2 nze dyz t nzp Q/what type of partial differential equation (PDE) are the following-arrow_forward
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning





