Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
bartleby

Videos

Question
Book Icon
Chapter 7.6, Problem 25E
Interpretation Introduction

Interpretation:

Consider the weakly nonlinear oscillator x¨ + x + εh(x,x˙,t) = 0. Let x(t) = r(t)cos (t+ϕ(t)), x˙ = - r(t)sin(t+ϕ(t)). This change of variable should be regarded as a definition of r(t) and ϕ(t).

Show that r˙ = ε h sin(t+ϕ), rϕ˙=ε h cos(t+ϕ).

Let r(t) = 1t-πt+πr(τ) denote the running average of r over one cycle of the sinusoidal oscillation. Show that drdt = drdt.

Show that drdt = εh[rcos(t+ϕ),-rsin(t+ϕ),t]sin(t+θ).

Show that r(t)= r¯+O() and ϕ(t) = ϕ¯(t)+O(), and therefore dr¯dt = ε(h(r¯ cos(t + ϕ¯)), - r¯ sin(t + ϕ¯), t)sin(t + ϕ¯) + O(ε2)r¯dϕ¯dt= ε(h(r¯ cos(t + ϕ¯)), - r¯ sin(t + ϕ¯), t)cos(t + ϕ¯) + O(ε2).

Concept Introduction:

The expression for the averaging equation for magnitude is x(t,ε) = x0+O(ε).

The expression of initial displacement x0 is x0 = r(T)cos(ϕ(T)).

The expression of the amplitude of any limit cycle for the original system is r=r0+O(ε).

The expression of the frequency of any limit cycle for the original system is ω = 1+εϕ'.

Taylor series expansion of x(t,ε) is x(t,ε)x(t,T)+O(ε). Here, O(ε) are the higher order terms of the Taylor series expansion.

Expert Solution & Answer
Check Mark

Answer to Problem 25E

Solution:

The result r˙ = ε h sin(t+ϕ), rϕ˙=ε h cos(t+ϕ) is proved.

The result drdt = drdt is proved.

The result drdt = εh[rcos(t+ϕ),-rsin(t+ϕ),t]sin(t+θ) is proved.

The results r(t)= r¯+O(), ϕ(t) = ϕ¯(t)+O() and

dr¯dt = ε(h(r¯ cos(t + ϕ¯)), - r¯ sin(t + ϕ¯), t)sin(t + ϕ¯) + O(ε2)r¯dϕ¯dt= ε(h(r¯ cos(t + ϕ¯)), - r¯ sin(t + ϕ¯), t)cos(t + ϕ¯) + O(ε2) are proved.

Explanation of Solution

The expression for the averaging equation for magnitude is:

x(t,ε) = x0+O(ε)

Here, x is the position and x0 is the initial position of the system.

The expression of initial displacement x0 is:

x0 = r(T)cos(ϕ(T))

Here, r(T) is the radius of the polar coordinate system, and ϕ is the angle formed by the radius.

The expression of the amplitude of any limit cycle for the original system is r=r0+O(ε).

The expression of the frequency of any limit cycle for the original system is:

ω = 1+εϕ'

Here, ϕ' is the Taylor series expansion of the function ϕ(T).

Taylor series expansion of x(t,ε) is :

x(t,ε)x(t,T)+O(ε)

Here, O(ε) are the higher order terms of the Taylor series expansion.

(a)

The first derivative of r(t) and ϕ(t) is expressed as follows:

The system equation is:

x¨+x+εh(x,x˙,t) = 0

And,

x(t) = r(t)cos(t+ϕ(t))x˙(t) = -r(t)sin(t+ϕ(t))

Differentiate function x(t) with respect to time,

ddtx(t) = ddtr(t)cos(t+ϕ(t))x˙(t) = r˙cos(t+ϕ)-r(1+ϕ˙)sin(t+ϕ)

Substitute -rsin(t+ϕ) for x˙(t) in the above,

-rsin(t+ϕ)=r˙cos(t+ϕ)-r(1+ϕ˙)sin(t+ϕ)-rsin(t+ϕ) = r˙cos(t+ϕ)-rsin(t+ϕ)-rϕ˙sin(t+ϕ)r˙cos(t+ϕ)rϕ˙sin(t+ϕ) = 0

Further differentiate the function x˙(t) from the above expression,

dx˙(t)dt = d(-r(t)sin(t+ϕ(t)))dtx¨(t) = -r˙sin(t+ϕ(t))-r(1+ϕ˙)cos(t+ϕ(t))

Substitute -r˙sin(t+ϕ(t))-r(1+ϕ˙)cos(t+ϕ(t)) for x¨(t) and r(t)cos(t+ϕ(t)) for x(t) in the above expression of x¨+x+εh(x,x˙,t)

-r˙sin(t+ϕ(t))-r(1+ϕ˙)cos(t+ϕ(t))+r(t)cos(t+ϕ(t))+εh = 0-r˙sin(t+ϕ(t))-rϕ˙cos(t+ϕ(t))+εh = 0r˙sin(t+ϕ(t))+rϕ˙cos(t+ϕ(t)) = εh

From the above calculation of r(t) and ϕ(t), there are two expressions obtained,

r˙cos(t+ϕ)-rϕ˙sin(t+ϕ) = 0r˙sin(t+ϕ(t))+rϕ˙cos(t+ϕ(t)) = εh

Multiply cos(t+ϕ) in equation r˙cos(t+ϕ)-rϕ˙sin(t+ϕ) = 0 and sin(t+ϕ) in equation r˙sin(t+ϕ(t))+rϕ˙cos(t+ϕ(t)) = εh

Therefore, the equation is:

r˙cos2(t+ϕ(t))-rϕ˙sin(t+ϕ(t))cos(t+ϕ(t)) = 0r˙sin2(t+ϕ(t))+rϕ˙cos(t+ϕ(t))sin(t+ϕ(t)) = εhsin(t+ϕ(t)) 

sin2θ+cos2θ=1

Add the above two expression,

r˙cos2(t+ϕ(t)) - rϕ˙sin(t+ϕ(t))cos(t+ϕ(t))+r˙sin2(t+ϕ(t))+rϕ˙cos(t+ϕ(t))sin(t+ϕ(t))=εhsin(t + ϕ(t)) From the trigonometric expression,

sin2θ+cos2θ=1

r˙ = εhsin(t + ϕ(t))

Multiply sin(t+ϕ) in equation r˙cos(t+ϕ)- rϕ˙sin(t+ϕ) = 0 and cos(t+ϕ) in equation r˙sin(t+ϕ(t))+rϕ˙cos(t+ϕ(t))=εh

r˙cos(t+ϕ(t))sin(t+ϕ(t))-rϕ˙sin2(t+ϕ(t))=0r˙sin(t+ϕ(t))cos(t+ϕ(t))+rϕ˙cos2(t+ϕ(t))sin(t+ϕ(t)) = εhcos(t+ϕ(t))

Adding the above expressions,

rϕ˙ = εhcos(t+ϕ(t))

Hence, expression of r˙ and rϕ˙ is rϕ˙=εh cos(t+ϕ(t))r˙=εh sin(t+ϕ(t)).

(b)

The expression for r(t) is given in the question is:

r(t) = 1t-πt+πr(τ)

From Leibniz’s integral rule, considered the function r˙(t) is continuous for τ[t-π, t+π].

Differentiate the above expression,

drdt = ddt(1t-πt+πr(t))drdt = 1(r(t+π)(ddt(t+π))-r(t-π)(ddt(t-π))t-πt+πtr(τ))drdt = 1(r(t+π)(1)-r(t-π)(1)+t-πt+π)drdt = 1(r(t+π)-r(t-π))

drdt = 1t-πt+πdr(τ)drdt = drdt

Hence, expression drdt = drdt is proved.

(c)

drdt = drdtdrdt = r˙(t)

Substitute h(x,x˙,t)sin(t+ϕ) for r˙(t) in above,

r˙(t) = h(x,x˙,t)sin(t+ϕ)

Substitute -r(t)sin(t+ϕ(t)) for x˙(t) and r(t)cos(t+ϕ(t)) for x(t) in the above expression,

r˙(t) = h(r(t)cos(t+ϕ(t)), - rsin(t+ϕ(t)),t)sin(t+ϕ)

Therefore the expression of r˙(t) is

r˙(t) = h(r(t)cos(t+ϕ(t)), - rsin(t+ϕ(t)),t)sin(t+ϕ)

(d)

The magnitude and phase expression for the system equation is calculated as:

Apply Taylor series expansion of r(t) and ϕ(t),

r(t) = r¯ + O(ε)ϕ(t) = ϕ¯+ O(ε)

The above expression is true only because the average value of one oscillation and the rate of change over that cycle,

r = r¯+r˙r = r¯hsin(t+ϕ)r(t) = r¯+O()

ϕϕ¯+ϕ˙ϕϕ¯+r¯hcos(t+ϕ)ϕ(t) = ϕ¯(t)+O()

Therefore, from above expression for r˙(t) and ϕ˙(t),

dr¯dtr˙dr¯dt= ε(h(r¯ cos(t + ϕ¯)), - r¯ sin(t + ϕ¯), t)sin(t + ϕ)dr¯dt= ε(h(r¯ cos(t + ϕ¯)), - r¯ sin(t + ϕ¯), t)sin(t + ϕ) + O(ε)dr¯dt= ε(h(r¯ cos(t + ϕ¯)), - r¯ sin(t + ϕ¯), t)sin(t + ϕ) + O(ε2)

r¯dϕ¯dt = rϕ˙r¯dϕ¯dt= ε(h(r(t) cos(t + ϕ¯)), - r(t) sin(t + ϕ¯), t)cos(t + ϕ¯)r¯dϕ¯dt= ε(h(r¯ cos(t + ϕ¯)), - r¯ sin(t + ϕ¯), t)cos(t + ϕ¯) + O(ε)r¯dϕ¯dt= ε(h(r¯ cos(t + ϕ¯)), - r¯ sin(t + ϕ¯), t)cos(t + ϕ¯) + O(ε2)

Therefore, the expression of dr¯dt and r¯dϕ¯dt is

dr¯dt = ε(h(r¯ cos(t + ϕ¯)), - r¯ sin(t + ϕ¯), t)sin(t + ϕ¯) + O(ε2)r¯dϕ¯dt= ε(h(r¯ cos(t + ϕ¯)), - r¯ sin(t + ϕ¯), t)cos(t + ϕ¯) + O(ε2).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Show that y1(t) = cos(3t) and y2(t) = sin(3t) are linearly independent for all t.
State True or False, no justification needed. (a) The functions f₁ (t) = t and f₂(t) = e²t are linearly independent on the interval (-1,1). (b) The functions g₁ (t) = 2 sin² t and g₂ (t) = 1 − cos² t are linearly independent on the interval (−1,1). (c) The function x(t) = et - e-t is a solution to the equation (d) The function x = x+e-t. y(t) = is a solution to the equation -2 t² +1 y' = ty².
If z is implicitly defined as a function of x and y by xy-yz+xz=0, find dz/dx. (y+z)/(y-x) (z-x)/(x-y) (y-x)/(x+5) (x-y)/(2-x)
Chain Rule dy:dx = dy:du*du:dx; Author: Robert Cappetta;https://www.youtube.com/watch?v=IUYniALwbHs;License: Standard YouTube License, CC-BY
CHAIN RULE Part 1; Author: Btech Maths Hub;https://www.youtube.com/watch?v=TIAw6AJ_5Po;License: Standard YouTube License, CC-BY