Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
bartleby

Videos

Question
Book Icon
Chapter 7.6, Problem 13E
Interpretation Introduction

Interpretation:

Consider the Duffing oscillator, withsystem equation x¨ +x +εx3=0 where 0 < ε << 1, x(0) = a and x˙(0) = 0. Use the conservation of energy express oscillation period T(ε) as certain integral. Expand the integral as power series in, and integrate term by term to obtain formula T(ε)=c0+ c1ε + c2ε2+Ο(ε3), determine c0, c1, c2 and check that c0, c1 are consistent with 7.6.57.

Concept Introduction:

  • Use energy conservation of system to determine time period of oscillation.

  • Determine the coefficients.

  • Use power series for the expansion and compare the time period equation of system and for 7.6.57.

Expert Solution & Answer
Check Mark

Answer to Problem 13E

Solution:

  1. The oscillation period T(ε) as certain integral is

    T = 1(1 + εa22)K(k)

  2. The time period of the given system equation and of 7.6.57 is same for at least first two terms. c0= 2π, c1=  - 3πa24 and c2=57a4π128 and c0, c1 are consistent with 7.6.57.

Explanation of Solution

Conservation of energy: This theorem states that the energy of an isolated system is constant over certain time.

The non-linear system equation is,

x¨ + x + εh(x, x˙) = 0

Here, x is the position.

The expression of x¨ and x˙ is,

x¨ = d2xdt2

x˙ = dxdt

The conserved energy expression for the non-linear system is,

E = 12x˙2(x + εh(x, x˙))dx

Here E is the energy.

The expression of the time period for the system is,

T = 0Tdt

Here T is the time period of the system.

The expanded Taylor series is,

y(x0+ h) = y(x0) + hy'(x0) + h22!y"(x0) + ...

Here h is the constant parameter.

  1. The non-linear system equation as per given is,

    x¨ + x + εx3 = 0 ,  x(0) = a,  x˙(0) = 0

    By comparing with the nonlinear system equation,

    x¨+x+εh(x, x ˙)=0

    h(x, x˙)=x3

    From the equation of energy, the system energy is,

    E = 12x˙2(x + εh(x, x˙))dx

    E = 12x˙2(x + εx3)dx

    E = 12x˙2x22 + εx44

    From the given initial position of the system t = 0, the maximum amplitude of the oscillation of the system is a.

    Substitute initial condition x(0)=a and x˙(0)=0 in the energy expression,

    E = 12(x˙(0))2(x(0))22+ ε(x(0))44

    E = 0 + a22 + εa44

    E = a22 + εa44

    Comparing the above initial energy condition equation the energy expression related with time is,

    12x˙2 +  x22 +  εx44 = a22 + εa44

    x˙2 +  x2 +  εx42 = a2 + εa42

    x˙2 =  a2 + εa42 - x2 -  εx42

    Square root of both sides,

    x˙ =  a2 + εa42 - x2 -  εx42

    The expression of x˙ is,

    x˙ = dxdt

    Rearrange the above expression in terms of dt is,

    dt = dxx˙

    On integration,

    dt = dxx˙

    The expression of the time period is,

    T = 0Tdt

    For the quarter cycle, the value of x decrease from a to 0. Hence the period of the one cycle is T = 40T4dt.

    Substitute dt=dxx˙

    T = 40T4dxx˙

    Substitute 0 for the lower limit of the integration and a for the upper limit of the integration

    T = 40adxx˙

    Substitute x˙ =  a2 + εa42 - x2 -  εx42 in the above expression of the time period

    T = 40adx a2 + εa42 - x2 -  εx42

    For easy calculation of the time period consider a function x = ay, dx = a dy.

    For the calculation of the integration limit cycle,

    by changing the limit,

    The lower limit, x= 0 , 0 = ay, hence y = 0

    Similarly, The higher limit, x= a , a = ay, hence y = 1.

    By substituting all the values in time period equation,

    T = 401ady a2 + εa42 - (ay)2 -  ε(ay)42

    T = 401ady a2 + εa42 - a2y2 -  εa4y42

    T = 401ady a2 (1 - y2)+ εa42(1 - y4)

    T = 401ady a(1 - y2)+ εa22(1 - y4)

    From trigonometric identity,

    (a2 - b2) = (a + b)(a - b)

    T = 401dy (1 - y2)+ εa22(1 - y2)(1 + y2)

    T = 401dy (1 - y2)(1 + εa22(1 + y2))

    T = 401dy (1 - y2)(1 + εa22)(1 + εa2y22(1 + εa22))

    Further solve,

    T = 1(1 + εa22)401dy (1 - y2)(1 + εa2y22(1 + εa22))

    Consider a constant term k2 = - εa22(1 + εa22)

    Hence the time period is

    T = 1(1 + εa22)401dy (1 - y2)(1 - k2y2)

    Consider a function K(k) This is the complete elliptic integral of the first kind.

    Therefore the time constant of the given system is, T = 1(1 + εa22)K(k).

  2. The power series of the time period function is calculated as,

    The expression of the time period of the system is,

    T = 401ady a2 + εa42 - a2y2 -  εa4y42

    = 401ady a1 + εa22 - y2 -  εa2y42

    T = 401dy 1 + εa22 - y2 -  εa2y42

    T = 401dy 1 - y2 +  ε(a22 - a2y42)

    Further solve,

    T = 401dy 1 - y2 +  ε(a22 - a2y42)

    = 401dy 1 - y2 +  ε(a22 - a2y42)

    Apply Taylor series in the above expression of the time period

    T = 401dy 1 - y2 +  ε(a22 - a2y42)

    T = 01(41-y2 - ε(a22 - a2y42)2(1 - y2)32 + ε23a4(a22 - a2y42)28(1 - y2)52 + O(ε3))dy

    T = 2π - 3πa24ε + 57a4π128ε2 + O(ε3)

    By comparing the T(ε)=c0+ c1ε + c2ε2+Ο(ε3) to obtain c0, c1, c2

    T = 2π - 3πa24ε + 57a4π128ε2 + O(ε3)

    Hence c0= 2π, c1=  - 3πa24 and c2=57a4π128

    T = 2π (1 - 3a28ε + 57a4256ε2 + O(ε3))

    The expression of the frequency in equation of 7.6.57 is as mention in the book is,

    ω = 1 + 38εa2 + O(ε2)

    The time period of the equation 7.6.57 is calculated as,

    The expression of the time period in terms of the angular frequency is,

    T = ω

    Substituting ω in the above expression,

    T = (1 + 38εa2 + O(ε2))

    T =2π(1 + 38εa2+Ο(ε2))1

    Apply Taylor series expansion in the above equation of the time period,

    T = 2π(1 - 38εa2 + O(ε2))

    So two methods have agreement in at least the first two terms.

    Therefore the time period of the above system expression and time period for the equation 7.6.57 is same as at least two terms in the system equation.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Between the function 3 (4)=x-x-1 Solve inside the interval [1,2]. then find the approximate Solution the root within using the bisection of the error = 10² method.
E10) Perform four iterations of the Jacobi method for solving the following system of equations. 2 -1 -0 -0 XI 2 0 0 -1 2 X3 0 0 2 X4 With x(0) (0.5, 0.5, 0.5, 0.5). Here x = (1, 1, 1, 1)". How good x (5) as an approximation to x?
by (2) Gauss saidel - - method find (2) و X2 for the sestem X1 + 2x2=-4 2x1 + 2x2 = 1 Such thef (0) x2=-2
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
But what is the Fourier Transform? A visual introduction.; Author: 3Blue1Brown;https://www.youtube.com/watch?v=spUNpyF58BY;License: Standard YouTube License, CC-BY