Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
bartleby

Videos

Question
Book Icon
Chapter 7.6, Problem 1E
Interpretation Introduction

Interpretation:

To show that x(t,ε) = (1- ε2)-1/2e-εtsin[(1-ε2)1/2t] is expanded as a power series in ε, we recover x(t, ε) = (1- ε2)-1/2e-εtsin t - εt sin t+Ο(ε2).

Concept Introduction:

Usepower series expansion.

Expert Solution & Answer
Check Mark

Answer to Problem 1E

Solution:

It is shown that for the given equation x(t,ε) = (1- ε2)-1/2e-εtsin[(1-ε2)1/2t], power series expansion is x(t,τ) = sin t - εt sin t+Ο(ε2).

Explanation of Solution

The power series expansion of the function f(x)= an(x- c)n is given as,

0an(x - c)n=a0+ a1(x- c)+ a2(x- c)2+.....

Here, c is the constant and an the coefficient of the nth term.

From the equation 7.6.7

x(t,ε) = (1- ε2)-1/2e-εtsin[(1-ε2)1/2t]

By differentiating the above equation with respect to ε,

dx(t,ε) = d((1- ε2)-1/2e-εtsin[(1-ε2)1/2t])

dx(t,ε) = e-εtsin[(1-ε2)1/2t]d((1- ε2)-1/2)+(1- ε2)-1/2d(e-εtsin[(1-ε2)1/2t])

dx(t,ε) = e-εtsin[(1-ε2)1/2t](12(1- ε2)-3/2(2ε))+(1- ε2)-1/2d(e-εtsin[(1-ε2)1/2t])

dx(t,ε) = e-εtsin[(1-ε2)1/2t](ε)(1- ε2)-3/2+(1- ε2)-1/2d(e-εtsin[(1-ε2)1/2t])

dx(t,ε) = e-εtsin[(1-ε2)1/2t](ε)(1- ε2)-3/2+(1- ε2)-1/2e-εtd(sin[(1-ε2)1/2t])+(1- ε2)-1/2sin[(1-ε2)1/2t]d(e-εt)

dx(t,ε) = e-εtsin[(1-ε2)1/2t](ε)(1- ε2)-3/2+(1- ε2)-1/2e-εtcos[(1- ε2)1/2t]t12(1-ε2)-1/2(2ε)               + (1- ε2)-1/2sin[(1-ε2)1/2t]e-εt(-t)

dx(t,ε) = e-εtsin[(1-ε2)1/2t](ε)(1- ε2)-3/2+(1- ε2)-1/2e-εtcos[(1- ε2)1/2t]t(1-ε2)-1/2(ε)               + (1- ε2)-1/2sin[(1-ε2)1/2t]e-εt(-t)

dx(t,ε) = e-εtsin[(1-ε2)1/2t](ε)(1- ε2)-3/2+(1- ε2)-1e-εtcos[(1- ε2)1/2t]t(1-ε2)-1/2(ε)               + (1- ε2)-1/2sin[(1-ε2)1/2t]e-εt(-t)

dx(t,ε) = ε(1- ε2)-3/2e-εtsin[(1-ε2)1/2t]εt(1- ε2)-1e-εtcos[(1- ε2)1/2t] - t(1- ε2)-1/2e-εtsin[(1-ε2)1/2t]

The value of x(t,ε) at ε0 is calculated as,

Substitute 0 for ε in the above expression x(t,ε)

x(t,0) = sin t

Value of dx(t,ε), as ε0

d(x(t, 0))=-t sin t

The power series expansion of x(t,ε) is given as:

x(t,τ)= x(t,ε)|ε=0+εdx(t,ε)dε|ε=0+Ο(ε2)

x(t,τ) = x(t,0)+εdx(t, 0)dε+Ο(ε2)

x(t,τ) = sin t+ε(-t sin t)+Ο(ε2)

x(t,τ) = sin t - εt sin t+Ο(ε2)

Hence, the power series expansion is x(t,τ) = sin t - εt sin t+Ο(ε2) for the given equation x(t,ε) = (1- ε2)-1/2e-εtsin[(1-ε2)1/2t].

Conclusion

It is shown that for the givenequation x(t,ε) = (1- ε2)-1/2e-εtsin[(1-ε2)1/2t], the power series expansion is x(t,τ) = sin t - εt sin t+Ο(ε2)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Find the Fourier series representation of the periodic function below if c = 9 and d = 18.7. Then, find the value of an if n = 7. с -6
Devshi
3- Find the binomial series of the function f(x) = (1– 2x)3
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Power Series; Author: Professor Dave Explains;https://www.youtube.com/watch?v=OxVBT83x8oc;License: Standard YouTube License, CC-BY
Power Series & Intervals of Convergence; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XHoRBh4hQNU;License: Standard YouTube License, CC-BY