Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
bartleby

Videos

Question
Book Icon
Chapter 7.6, Problem 1E
Interpretation Introduction

Interpretation:

To show that x(t,ε) = (1- ε2)-1/2e-εtsin[(1-ε2)1/2t] is expanded as a power series in ε, we recover x(t, ε) = (1- ε2)-1/2e-εtsin t - εt sin t+Ο(ε2).

Concept Introduction:

Usepower series expansion.

Expert Solution & Answer
Check Mark

Answer to Problem 1E

Solution:

It is shown that for the given equation x(t,ε) = (1- ε2)-1/2e-εtsin[(1-ε2)1/2t], power series expansion is x(t,τ) = sin t - εt sin t+Ο(ε2).

Explanation of Solution

The power series expansion of the function f(x)= an(x- c)n is given as,

0an(x - c)n=a0+ a1(x- c)+ a2(x- c)2+.....

Here, c is the constant and an the coefficient of the nth term.

From the equation 7.6.7

x(t,ε) = (1- ε2)-1/2e-εtsin[(1-ε2)1/2t]

By differentiating the above equation with respect to ε,

dx(t,ε) = d((1- ε2)-1/2e-εtsin[(1-ε2)1/2t])

dx(t,ε) = e-εtsin[(1-ε2)1/2t]d((1- ε2)-1/2)+(1- ε2)-1/2d(e-εtsin[(1-ε2)1/2t])

dx(t,ε) = e-εtsin[(1-ε2)1/2t](12(1- ε2)-3/2(2ε))+(1- ε2)-1/2d(e-εtsin[(1-ε2)1/2t])

dx(t,ε) = e-εtsin[(1-ε2)1/2t](ε)(1- ε2)-3/2+(1- ε2)-1/2d(e-εtsin[(1-ε2)1/2t])

dx(t,ε) = e-εtsin[(1-ε2)1/2t](ε)(1- ε2)-3/2+(1- ε2)-1/2e-εtd(sin[(1-ε2)1/2t])+(1- ε2)-1/2sin[(1-ε2)1/2t]d(e-εt)

dx(t,ε) = e-εtsin[(1-ε2)1/2t](ε)(1- ε2)-3/2+(1- ε2)-1/2e-εtcos[(1- ε2)1/2t]t12(1-ε2)-1/2(2ε)               + (1- ε2)-1/2sin[(1-ε2)1/2t]e-εt(-t)

dx(t,ε) = e-εtsin[(1-ε2)1/2t](ε)(1- ε2)-3/2+(1- ε2)-1/2e-εtcos[(1- ε2)1/2t]t(1-ε2)-1/2(ε)               + (1- ε2)-1/2sin[(1-ε2)1/2t]e-εt(-t)

dx(t,ε) = e-εtsin[(1-ε2)1/2t](ε)(1- ε2)-3/2+(1- ε2)-1e-εtcos[(1- ε2)1/2t]t(1-ε2)-1/2(ε)               + (1- ε2)-1/2sin[(1-ε2)1/2t]e-εt(-t)

dx(t,ε) = ε(1- ε2)-3/2e-εtsin[(1-ε2)1/2t]εt(1- ε2)-1e-εtcos[(1- ε2)1/2t] - t(1- ε2)-1/2e-εtsin[(1-ε2)1/2t]

The value of x(t,ε) at ε0 is calculated as,

Substitute 0 for ε in the above expression x(t,ε)

x(t,0) = sin t

Value of dx(t,ε), as ε0

d(x(t, 0))=-t sin t

The power series expansion of x(t,ε) is given as:

x(t,τ)= x(t,ε)|ε=0+εdx(t,ε)dε|ε=0+Ο(ε2)

x(t,τ) = x(t,0)+εdx(t, 0)dε+Ο(ε2)

x(t,τ) = sin t+ε(-t sin t)+Ο(ε2)

x(t,τ) = sin t - εt sin t+Ο(ε2)

Hence, the power series expansion is x(t,τ) = sin t - εt sin t+Ο(ε2) for the given equation x(t,ε) = (1- ε2)-1/2e-εtsin[(1-ε2)1/2t].

Conclusion

It is shown that for the givenequation x(t,ε) = (1- ε2)-1/2e-εtsin[(1-ε2)1/2t], the power series expansion is x(t,τ) = sin t - εt sin t+Ο(ε2)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
5. (a) State the Residue Theorem. Your answer should include all the conditions required for the theorem to hold. (4 marks) (b) Let y be the square contour with vertices at -3, -3i, 3 and 3i, described in the anti-clockwise direction. Evaluate に dz. You must check all of the conditions of any results that you use. (5 marks) (c) Evaluate L You must check all of the conditions of any results that you use. ཙ x sin(Tx) x²+2x+5 da. (11 marks)
3. (a) Lety: [a, b] C be a contour. Let L(y) denote the length of y. Give a formula for L(y). (1 mark) (b) Let UCC be open. Let f: U→C be continuous. Let y: [a,b] → U be a contour. Suppose there exists a finite real number M such that |f(z)| < M for all z in the image of y. Prove that < ||, f(z)dz| ≤ ML(y). (3 marks) (c) State and prove Liouville's theorem. You may use Cauchy's integral formula without proof. (d) Let R0. Let w € C. Let (10 marks) U = { z Є C : | z − w| < R} . Let f UC be a holomorphic function such that 0 < |ƒ(w)| < |f(z)| for all z Є U. Show, using the local maximum modulus principle, that f is constant. (6 marks)
3. (a) Let A be an algebra. Define the notion of an A-module M. When is a module M a simple module? (b) State and prove Schur's Lemma for simple modules. (c) Let AM(K) and M = K" the natural A-module. (i) Show that M is a simple K-module. (ii) Prove that if ƒ € Endд(M) then ƒ can be written as f(m) = am, where a is a matrix in the centre of M, (K). [Recall that the centre, Z(M,(K)) == {a Mn(K) | ab M,,(K)}.] = ba for all bЄ (iii) Explain briefly why this means End₁(M) K, assuming that Z(M,,(K))~ K as K-algebras. Is this consistent with Schur's lemma?
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Power Series; Author: Professor Dave Explains;https://www.youtube.com/watch?v=OxVBT83x8oc;License: Standard YouTube License, CC-BY
Power Series & Intervals of Convergence; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XHoRBh4hQNU;License: Standard YouTube License, CC-BY