VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
12th Edition
ISBN: 9781260916942
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7.4, Problem 7.99P

Knowing that dc = 9 ft, determine (a) the distances dB and dD (b) the reaction at E.

Chapter 7.4, Problem 7.99P, Knowing that dc = 9 ft, determine (a) the distances dB and dD (b) the reaction at E. Fig. P7.99 and

Fig. P7.99 and P7.100

(a)

Expert Solution
Check Mark
To determine

The distances dB and dD.

Answer to Problem 7.99P

The distance dB is 5.20ft. The distance dD is 12.60ft.

Explanation of Solution

Refer Fig P7.99.

The figure 1 below shows the free body diagram of the portion ABC.

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA), Chapter 7.4, Problem 7.99P , additional homework tip  1

The total moment about the point C is zero.

Refer the free body diagram and write the equation for the moment about point C.

9Ax12Ay+(1kip)(6ft)=0

Here Ax is the horizontal reaction at point A, Ay is the vertical reaction at point A.

Re-write the above equation to get an expression for Ax .

Ax=43Ay23 (I)

The figure 2 below shows the free body diagram of the entire cable.

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA), Chapter 7.4, Problem 7.99P , additional homework tip  2

The moment about point E is zero.

Refer the free body diagram of the entire cable and write the equation of the moment about point E.

12Ax30Ay+(1kip)(18ft)+(1kip)(24ft)+(2kips)(9ft)=0

Simplify the above equation.

12Ax30Ay+60=0 (II)

Since the system is in equilibrium the total vertical and horizontal components will be zero.

Refer figure 2 and write the equation for total horizontal force.

Ax+Ex=0 (III)

Here Ex is the horizontal reaction force at point E.

Refer figure 2 and write the equation for the total vertical force.

Ay+Ey1kip1kip2kip=0 (IV)

The figure 4 below shows the free body diagram of the portion AB.

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA), Chapter 7.4, Problem 7.99P , additional homework tip  3

The moment about point B is zero.

Refer figure 4 and write the equation for the moment about point B.

Ay(6ft)+AxdB=0 (V)

The figure 5 below shows the free body diagram of the portion DE.

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA), Chapter 7.4, Problem 7.99P , additional homework tip  4

Refer figure 5 and write the formula for the distance h.

h=(9ft)tan3.8° (VI)

Here h is the vertical distance between point D and E.

Refer figure 5 and write the formula for distance dD.

dD=12ft+h (VII)

Conclusion:

Substitute equation (I) in equation (II).

12(43Ay23)30Ay+60=016Ay30Ay8+60=014Ay=52Ay=3.7143kips

Substitute 3.7143kips for Ay in equation (I) to get

Ax=43(3.7143kips)23=4.257kips

Substitute 4.257kips for Ax in equation (III) to determine Ex.

Ex=4.257kips

Substitute 3.7143kips for Ay in equation (IV) to determine Ey.

Ey=3.7143kips+1kip+1kip+2kip=0.2857kips

Substitute 4.257kips for Ax, 3.7143kips for Ay in equation (V) to determine dD.

dB=3.7143kips(6ft)4.257kips=5.20ft

Calculate h from equation (VI).

h=(9ft)tan3.8°=0.599ft

Substitute 0.599ft for h in equation (VII) to determine dD.

dD=12ft+0.599ft=12.60ft

The distance dB is 5.20ft. The distance dD is 12.60ft.

(b)

Expert Solution
Check Mark
To determine

The reaction at point E.

Answer to Problem 7.99P

The reaction at point E is 4.30kips making an angle 3.81° with the horizontal.

Explanation of Solution

Refer Fig P7.99.

The figure 1 below shows the free body diagram of the portion ABC.

The total moment about the point C is zero.

Refer the free body diagram and write the equation for the moment about point C.

9Ax12Ay+(1kip)(6ft)=0

Here Ax is the horizontal reaction at point A, Ay is the vertical reaction at point A.

Re-write the above equation to get an expression for Ax .

Ax=43Ay23 (I)

The figure 2 below shows the free body diagram of the entire cable.

The moment about point E is zero.

Refer the free body diagram of the entire cable and write the equation of the moment about point E.

12Ax30Ay+(1kip)(18ft)+(1kip)(24ft)+(2kips)(9ft)=0

Simplify the above equation.

12Ax30Ay+60=0 (II)

Since the system is in equilibrium the total vertical and horizontal components will be zero.

Refer figure 2 and write the equation for total horizontal force.

Ax+Ex=0 (III)

Here Ex is the horizontal reaction force at point E.

Refer figure 2 and write the equation for the total vertical force.

Ay+Ey1kip1kip2kip=0 (IV)

Write the formula for the magnitude of the reaction at point E.

E=Ex2+Ey2 (V)

Here E is the magnitude of the reaction at point E.

Write the formula for the angle made by the reaction at point E with horizontal.

θ=tan1(EyEx) (VI)

Here θ is the angle made by the reaction at point E with horizontal.

Conclusion:

Substitute equation (I) in equation (II).

12(43Ay23)30Ay+60=016Ay30Ay8+60=014Ay=52Ay=3.7143kips

Substitute 3.7143kips for Ay in equation (I) to get

Ax=43(3.7143kips)23=4.257kips

Substitute 4.257kips for Ax in equation (III) to determine Ex.

Ex=4.257kips

Substitute 3.7143kips for Ay in equation (IV) to determine Ey.

Ey=3.7143kips+1kip+1kip+2kip=0.2857kips

Substitute 0.2857kips for Ey, 4.257kips for Ey in equation (V) to determine E.

E=(4.257kips)2+(0.2857kips)2=4.30kips

Substitute 0.2857kips for Ey, 4.257kips for Ey in equation (VI) to determine θ.

θ=tan1(0.2857kips4.257kips)=3.81°

Thus the reaction at point E is 4.30kips making an angle 3.81° with the horizontal.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The lower jaw AB [Purple 1] and the upper jaw-handle AD [Yellow 2] exert vertical clamping forces on the object at R. The hand squeezes the upper jaw-handle AD [2] and the lower handle BC [Orane 4] with forces F. (Member CD [Red 3] acts as if it is pinned at D, but, in a real vise-grips, its position is actually adjustable.) The clamping force, R, depends on the geometry and on the squeezing force F applied to the handles. Determine the proportionality between the clamping force, R, and the squeezing force F for the dimensions given. d3 d4 R 1 B d1 2 d2 D... d5 F 4 F Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value d1 65 mm d2 156 mm d3 50 mm 45 d4 d5 113 mm 30 mm R = F
A triangular distributed load of max intensity w =460 N/m acts on beam AB. The beam is supported by a pin at A and member CD, which is connected by pins at C and D respectively. Determine the reaction forces at A and C. Enter your answers in Cartesian components. Assume the masses of both beam AB and member CD are negligible. cc 040 BY NC SA 2016 Eric Davishahl W A C D -a- B Ул -b- x Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value α 5.4 m b 8.64 m C 3.24 m The reaction at A is A = i+ ĴN. λ = i+ Ĵ N. The reaction at C is C =
56 Clamps like the one shown are commonly used in woodworking applications. This clamp has the dimensions given in the table below the figure, and its jaws are mm thick (in the direction perpendicular to the plane of the picture). a.) The screws of the clamp are adjusted so that there is a uniform pressure of P = 150 kPa being applied to the workpieces by the jaws. Determine the force carried in each screw. Hint: the uniform pressure can be modeled in 2-D as a uniform distributed load with intensity w = Pt (units of N/m) acting over the length of contact between the jaw and the workpiece. b.) Determine the minimum vertical force (parallel to the jaws) required to pull either one of the workpieces out of the clamp jaws. Use a coefficient of static friction between all contacting surfaces of μs = 0.56 and the same clamping pressure given for part (a). 2013 Michael Swanbom A B C a Values for dimensions on the figure are given in the following table. Note the figure may not be to scale.…

Chapter 7 Solutions

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)

Ch. 7.1 - A semicircular rod is loaded as shown. Determine...Ch. 7.1 - Fig. P7.11 and P7.12 7.12 A semicircular rod is...Ch. 7.1 - The axis of the curved member AB is a parabola...Ch. 7.1 - Knowing that the axis of the curved member AB is a...Ch. 7.1 - Prob. 7.15PCh. 7.1 - Fig. P7.15 and P7.16 7.16 Knowing that the radius...Ch. 7.1 - Prob. 7.17PCh. 7.1 - For the frame of Prob. 7.17, determine the...Ch. 7.1 - Knowing that the radius of each pulley is 200 mm...Ch. 7.1 - Fig. P7.19 and P7.20 7.20 Knowing that the radius...Ch. 7.1 - and 7.22 A force P is applied to a bent rod that...Ch. 7.1 - and 7.22 A force P is applied to a bent rod that...Ch. 7.1 - Prob. 7.23PCh. 7.1 - For the rod of Prob. 7.23, determine the magnitude...Ch. 7.1 - A semicircular rod of weight W and uniform cross...Ch. 7.1 - Prob. 7.26PCh. 7.1 - Prob. 7.27PCh. 7.1 - 7.27 and 7.28 A half section of pipe rests on a...Ch. 7.2 - 7.29 through 7.32 For the beam and loading shown,...Ch. 7.2 - 7.29 through 7.32 For the beam and loading shown,...Ch. 7.2 - Prob. 7.31PCh. 7.2 - 7.29 through 7.32 For the beam and loading shown,...Ch. 7.2 - 7.33 and 7.34 For the beam and loading shown, (a)...Ch. 7.2 - 7.33 and 7.34 For the beam and loading shown, (a)...Ch. 7.2 - 7.35 and 7.36 For the beam and loading shown, (a)...Ch. 7.2 - Prob. 7.36PCh. 7.2 - 7.37 and 7.38 For the beam and loading shown, (a)...Ch. 7.2 - 7.37 and 7.38 For the beam and loading shown, (a)...Ch. 7.2 - For the beam and loading shown, (a) draw the shear...Ch. 7.2 - For the beam and loading shown, (a) draw the shear...Ch. 7.2 - Prob. 7.41PCh. 7.2 - For the beam and loading shown, (a) draw the shear...Ch. 7.2 - Assuming the upward reaction of the ground on beam...Ch. 7.2 - Solve Problem 7.43 knowing that P = 3wa. PROBLEM...Ch. 7.2 - Assuming the upward reaction of the ground on beam...Ch. 7.2 - Prob. 7.46PCh. 7.2 - Assuming the upward reaction of the ground on beam...Ch. 7.2 - Assuming the upward reaction of the ground on beam...Ch. 7.2 - Draw the shear and bending-moment diagrams for the...Ch. 7.2 - Draw the shear and bending-moment diagrams for the...Ch. 7.2 - Draw the shear and bending-moment diagrams for the...Ch. 7.2 - Draw the shear and bending-moment diagrams for the...Ch. 7.2 - Two small channel sections DF and EH have been...Ch. 7.2 - Solve Prob. 7.53 when = 60. PROBLEM 7.53 Two...Ch. 7.2 - For the structural member of Prob. 7.53, determine...Ch. 7.2 - For the beam of Prob. 7.43, determine (a) the...Ch. 7.2 - Determine (a) the distance a for which the maximum...Ch. 7.2 - For the beam and loading shown, determine (a) the...Ch. 7.2 - A uniform beam is to be picked up by crane cables...Ch. 7.2 - Knowing that P = Q = 150 lb, determine (a) the...Ch. 7.2 - Prob. 7.61PCh. 7.2 - Prob. 7.62PCh. 7.3 - Using the method of Sec. 7.3, solve Prob. 7.29....Ch. 7.3 - Prob. 7.64PCh. 7.3 - Prob. 7.65PCh. 7.3 - Using the method of Sec. 7.3, solve Prob. 7.32....Ch. 7.3 - Using the method of Sec. 7.3, solve Prob. 7.33....Ch. 7.3 - Using the method of Sec. 7.3, solve Prob. 7.34....Ch. 7.3 - 7.69 and 7.70 For the beam and loading shown, (a)...Ch. 7.3 - 7.69 and 7.70 For the beam and loading shown, (a)...Ch. 7.3 - Using the method of Sec. 7.3, solve Prob. 7.39....Ch. 7.3 - Using the method of Sec. 7.3, solve Prob. 7.40....Ch. 7.3 - Using the method of Sec. 7.3, solve Prob. 7.41....Ch. 7.3 - Using the method of Sec. 7.3, solve Prob. 7.42....Ch. 7.3 - 7.75 and 7.76 For the beam and loading shown, (a)...Ch. 7.3 - Prob. 7.76PCh. 7.3 - For the beam and loading shown, (a) draw the shear...Ch. 7.3 - For the beam and loading shown, (a) draw the shear...Ch. 7.3 - For the beam and loading shown, (a) draw the shear...Ch. 7.3 - For the beam and loading shown, (a) draw the shear...Ch. 7.3 - For the beam and loading shown, (a) draw the shear...Ch. 7.3 - For the beam and loading shown, (a) draw the shear...Ch. 7.3 - (a) Draw the shear and bending-moment diagrams for...Ch. 7.3 - Solve Prob. 7.83 assuming that the 300-lb force...Ch. 7.3 - For the beam and loading shown, (a) write the...Ch. 7.3 - For the beam and loading shown, (a) write the...Ch. 7.3 - For the beam and loading shown, (a) write the...Ch. 7.3 - Prob. 7.88PCh. 7.3 - The beam AB supports the uniformly distributed...Ch. 7.3 - Solve Prob. 7.89 assuming that the uniformly...Ch. 7.3 - The beam AB is subjected to the uniformly...Ch. 7.3 - Solve Prob. 7.91 assuming that the uniformly...Ch. 7.4 - Three loads are suspended as shown from the cable...Ch. 7.4 - Knowing that the maximum tension in cable ABCDE is...Ch. 7.4 - Prob. 7.95PCh. 7.4 - Fig. P7.95 and P7.96 7.96 If dA = dc = 6 ft,...Ch. 7.4 - Knowing that dc = 5 m, determine (a) the distances...Ch. 7.4 - Fig. P7.97 and P7.98 7.98 Determine (a) distance...Ch. 7.4 - Knowing that dc = 9 ft, determine (a) the...Ch. 7.4 - Fig. P7.99 and P7.100 7.100 Determine (a) the...Ch. 7.4 - Knowing that mB = 70 kg and mC = 25 kg, determine...Ch. 7.4 - Prob. 7.102PCh. 7.4 - Prob. 7.103PCh. 7.4 - Prob. 7.104PCh. 7.4 - Prob. 7.105PCh. 7.4 - If a = 4 m, determine the magnitudes of P and Q...Ch. 7.4 - An electric wire having a mass per unit length of...Ch. 7.4 - Prob. 7.108PCh. 7.4 - Prob. 7.109PCh. 7.4 - Prob. 7.110PCh. 7.4 - Prob. 7.111PCh. 7.4 - Two cables of the same gauge are attached to a...Ch. 7.4 - Prob. 7.113PCh. 7.4 - Prob. 7.114PCh. 7.4 - Prob. 7.115PCh. 7.4 - Prob. 7.116PCh. 7.4 - Prob. 7.117PCh. 7.4 - Prob. 7.118PCh. 7.4 - Prob. 7.119PCh. 7.4 - Prob. 7.120PCh. 7.4 - Prob. 7.121PCh. 7.4 - Prob. 7.122PCh. 7.4 - Prob. 7.123PCh. 7.4 - Prob. 7.124PCh. 7.4 - Prob. 7.125PCh. 7.4 - Prob. 7.126PCh. 7.5 - A 25-ft chain with a weight of 30 lb is suspended...Ch. 7.5 - A 500-ft-long aerial tramway cable having a weight...Ch. 7.5 - Prob. 7.129PCh. 7.5 - Prob. 7.130PCh. 7.5 - Prob. 7.131PCh. 7.5 - Prob. 7.132PCh. 7.5 - Prob. 7.133PCh. 7.5 - Prob. 7.134PCh. 7.5 - Prob. 7.135PCh. 7.5 - Prob. 7.136PCh. 7.5 - Prob. 7.137PCh. 7.5 - Prob. 7.138PCh. 7.5 - Prob. 7.139PCh. 7.5 - Prob. 7.140PCh. 7.5 - Prob. 7.141PCh. 7.5 - Prob. 7.142PCh. 7.5 - Prob. 7.143PCh. 7.5 - Prob. 7.144PCh. 7.5 - Prob. 7.145PCh. 7.5 - Prob. 7.146PCh. 7.5 - Prob. 7.147PCh. 7.5 - Prob. 7.148PCh. 7.5 - Prob. 7.149PCh. 7.5 - Prob. 7.150PCh. 7.5 - A cable has a mass per unit length of 3 kg/m and...Ch. 7.5 - Prob. 7.152PCh. 7.5 - Prob. 7.153PCh. 7 - Knowing that the turnbuckle has been tightened...Ch. 7 - Knowing that the turnbuckle has been tightened...Ch. 7 - Two members, each consisting of a straight and a...Ch. 7 - Knowing that the radius of each pulley is 150 mm,...Ch. 7 - Prob. 7.158RPCh. 7 - For the beam and loading shown, (a) draw the shear...Ch. 7 - For the beam and loading shown, (a) draw the shear...Ch. 7 - Prob. 7.161RPCh. 7 - Prob. 7.162RPCh. 7 - Prob. 7.163RPCh. 7 - Prob. 7.164RPCh. 7 - A 10-ft rope is attached to two supports A and B...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY