
Concept explainers
Knowing that dc = 9 ft, determine (a) the distances dB and dD (b) the reaction at E.
Fig. P7.99 and P7.100
(a)

The distances
Answer to Problem 7.99P
The distance
Explanation of Solution
Refer Fig P7.99.
The figure 1 below shows the free body diagram of the portion ABC.
The total moment about the point C is zero.
Refer the free body diagram and write the equation for the moment about point C.
Here
Re-write the above equation to get an expression for
The figure 2 below shows the free body diagram of the entire cable.
The moment about point E is zero.
Refer the free body diagram of the entire cable and write the equation of the moment about point E.
Simplify the above equation.
Since the system is in equilibrium the total vertical and horizontal components will be zero.
Refer figure 2 and write the equation for total horizontal force.
Here
Refer figure 2 and write the equation for the total vertical force.
The figure 4 below shows the free body diagram of the portion AB.
The moment about point B is zero.
Refer figure 4 and write the equation for the moment about point B.
The figure 5 below shows the free body diagram of the portion DE.
Refer figure 5 and write the formula for the distance
Here
Refer figure 5 and write the formula for distance
Conclusion:
Substitute equation (I) in equation (II).
Substitute
Substitute
Substitute
Substitute
Calculate
Substitute
The distance
(b)

The reaction at point E.
Answer to Problem 7.99P
The reaction at point E is
Explanation of Solution
Refer Fig P7.99.
The figure 1 below shows the free body diagram of the portion ABC.
The total moment about the point C is zero.
Refer the free body diagram and write the equation for the moment about point C.
Here
Re-write the above equation to get an expression for
The figure 2 below shows the free body diagram of the entire cable.
The moment about point E is zero.
Refer the free body diagram of the entire cable and write the equation of the moment about point E.
Simplify the above equation.
Since the system is in equilibrium the total vertical and horizontal components will be zero.
Refer figure 2 and write the equation for total horizontal force.
Here
Refer figure 2 and write the equation for the total vertical force.
Write the formula for the magnitude of the reaction at point E.
Here
Write the formula for the angle made by the reaction at point E with horizontal.
Here
Conclusion:
Substitute equation (I) in equation (II).
Substitute
Substitute
Substitute
Substitute
Substitute
Thus the reaction at point E is
Want to see more full solutions like this?
Chapter 7 Solutions
Vector Mechanics for Engineers: Statics
- 2. Figure below shows a U-tube manometer open at both ends and containing a column of liquid mercury of length l and specific weight y. Considering a small displacement x of the manometer meniscus from its equilibrium position (or datum), determine the equivalent spring constant associated with the restoring force. Datum Area, Aarrow_forward1. The consequences of a head-on collision of two automobiles can be studied by considering the impact of the automobile on a barrier, as shown in figure below. Construct a mathematical model (i.e., draw the diagram) by considering the masses of the automobile body, engine, transmission, and suspension and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine mounts.arrow_forward3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward
- 2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward500 Q3: The attachment shown in Fig.3 is made of 1040 HR. The static force is 30 kN. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). Fig. 3 All dimension in mm 30 kN 100 (10 Marks)arrow_forward(read image) (answer given)arrow_forward
- A cylinder and a disk are used as pulleys, as shown in the figure. Using the data given in the figure, if a body of mass m = 3 kg is released from rest after falling a height h 1.5 m, find: a) The velocity of the body. b) The angular velocity of the disk. c) The number of revolutions the cylinder has made. T₁ F Rd = 0.2 m md = 2 kg T T₂1 Rc = 0.4 m mc = 5 kg ☐ m = 3 kgarrow_forward(read image) (answer given)arrow_forward11-5. Compute all the dimensional changes for the steel bar when subjected to the loads shown. The proportional limit of the steel is 230 MPa. 265 kN 100 mm 600 kN 25 mm thickness X Z 600 kN 450 mm E=207×103 MPa; μ= 0.25 265 kNarrow_forward
- T₁ F Rd = 0.2 m md = 2 kg T₂ Tz1 Rc = 0.4 m mc = 5 kg m = 3 kgarrow_forward2. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. (x + 2)²y" + (x + 2)y' - y = 0 ; Hint: Let: z = x+2arrow_forward1. Find a power series solution in powers of x. y" - y' + x²y = 0arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





