Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
5th Edition
ISBN: 9780321816252
Author: C. Henry Edwards, David E. Penney, David Calvis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7.4, Problem 16P
Program Plan Intro
Program Description: Purpose of problem is to obtain the Laplace transformation of given function
Summary introduction:Program will use the theorem of differentiation of transforms for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Obtain the cubic Bězier curve for the following set of control points
-1 5
3
2
y
11
-4 8
B) Solve the differential equation by using Laplace transform
y" - y = -t²
y(0)=2 and y'(0)=0
3.) Find the Laplace transform of function f(t)
f(t) = 58(t)-2µ(t) + 7e-47
where m(t) is unit step function.
Chapter 7 Solutions
Differential Equations: Computing and Modeling (5th Edition), Edwards, Penney & Calvis
Ch. 7.1 - Apply the definition in (1) to find directly tile...Ch. 7.1 - Prob. 2PCh. 7.1 - Prob. 3PCh. 7.1 - Prob. 4PCh. 7.1 - Prob. 5PCh. 7.1 - Prob. 6PCh. 7.1 - Prob. 7PCh. 7.1 - Prob. 8PCh. 7.1 - Prob. 9PCh. 7.1 - Prob. 10P
Ch. 7.1 - Prob. 11PCh. 7.1 - Prob. 12PCh. 7.1 - Prob. 13PCh. 7.1 - Prob. 14PCh. 7.1 - Prob. 15PCh. 7.1 - Prob. 16PCh. 7.1 - Prob. 17PCh. 7.1 - Prob. 18PCh. 7.1 - Prob. 19PCh. 7.1 - Prob. 20PCh. 7.1 - Prob. 21PCh. 7.1 - Prob. 22PCh. 7.1 - Prob. 23PCh. 7.1 - Prob. 24PCh. 7.1 - Prob. 25PCh. 7.1 - Prob. 26PCh. 7.1 - Prob. 27PCh. 7.1 - Prob. 28PCh. 7.1 - Prob. 29PCh. 7.1 - Prob. 30PCh. 7.1 - Prob. 31PCh. 7.1 - Prob. 32PCh. 7.1 - Prob. 33PCh. 7.1 - Prob. 34PCh. 7.1 - Prob. 35PCh. 7.1 - Prob. 36PCh. 7.1 - Given a0, let f(t)=1 if 0__1a,f(t)=0 if t__a....Ch. 7.1 - Given that 0ab. Let f(t)=1 if a__tb,f(t)=0 if...Ch. 7.1 - Prob. 39PCh. 7.1 - Prob. 40PCh. 7.1 - Prob. 41PCh. 7.1 - Given constants a and b. define h(t) for t__0 by...Ch. 7.2 - Prob. 1PCh. 7.2 - Prob. 2PCh. 7.2 - Prob. 3PCh. 7.2 - Prob. 4PCh. 7.2 - Prob. 5PCh. 7.2 - Prob. 6PCh. 7.2 - Prob. 7PCh. 7.2 - Prob. 8PCh. 7.2 - Prob. 9PCh. 7.2 - Prob. 10PCh. 7.2 - Prob. 11PCh. 7.2 - Prob. 12PCh. 7.2 - Prob. 13PCh. 7.2 - Prob. 14PCh. 7.2 - Prob. 15PCh. 7.2 - Prob. 16PCh. 7.2 - Prob. 17PCh. 7.2 - Prob. 18PCh. 7.2 - Prob. 19PCh. 7.2 - Prob. 20PCh. 7.2 - Prob. 21PCh. 7.2 - Prob. 22PCh. 7.2 - Prob. 23PCh. 7.2 - Prob. 24PCh. 7.2 - Prob. 25PCh. 7.2 - Prob. 26PCh. 7.2 - Prob. 27PCh. 7.2 - Prob. 28PCh. 7.2 - Prob. 29PCh. 7.2 - Prob. 30PCh. 7.2 - Prob. 31PCh. 7.2 - Prob. 32PCh. 7.2 - Prob. 33PCh. 7.2 - Prob. 34PCh. 7.2 - Prob. 35PCh. 7.2 - Prob. 36PCh. 7.2 - Prob. 37PCh. 7.3 - Prob. 1PCh. 7.3 - Prob. 2PCh. 7.3 - Prob. 3PCh. 7.3 - Prob. 4PCh. 7.3 - Prob. 5PCh. 7.3 - Prob. 6PCh. 7.3 - Prob. 7PCh. 7.3 - Prob. 8PCh. 7.3 - Prob. 9PCh. 7.3 - Prob. 10PCh. 7.3 - Prob. 11PCh. 7.3 - Prob. 12PCh. 7.3 - Prob. 13PCh. 7.3 - Prob. 14PCh. 7.3 - Prob. 15PCh. 7.3 - Prob. 16PCh. 7.3 - Prob. 17PCh. 7.3 - Prob. 18PCh. 7.3 - Prob. 19PCh. 7.3 - Prob. 20PCh. 7.3 - Prob. 21PCh. 7.3 - Prob. 22PCh. 7.3 - Prob. 23PCh. 7.3 - Prob. 24PCh. 7.3 - Prob. 25PCh. 7.3 - Prob. 26PCh. 7.3 - Prob. 27PCh. 7.3 - Prob. 28PCh. 7.3 - Prob. 29PCh. 7.3 - Prob. 30PCh. 7.3 - Prob. 31PCh. 7.3 - Prob. 32PCh. 7.3 - Prob. 33PCh. 7.3 - Prob. 34PCh. 7.3 - Prob. 35PCh. 7.3 - Prob. 36PCh. 7.3 - Prob. 37PCh. 7.3 - Prob. 38PCh. 7.3 - Problems 39 and 40 illustrate Iwo types of...Ch. 7.3 - Problems 39 and 40 illustrate Iwo types of...Ch. 7.4 - Find the convolution f(t)g(t) in Problems 1...Ch. 7.4 - Prob. 2PCh. 7.4 - Prob. 3PCh. 7.4 - Prob. 4PCh. 7.4 - Prob. 5PCh. 7.4 - Prob. 6PCh. 7.4 - Prob. 7PCh. 7.4 - Prob. 8PCh. 7.4 - Prob. 9PCh. 7.4 - Prob. 10PCh. 7.4 - Prob. 11PCh. 7.4 - Prob. 12PCh. 7.4 - Prob. 13PCh. 7.4 - Prob. 14PCh. 7.4 - Prob. 15PCh. 7.4 - Prob. 16PCh. 7.4 - Prob. 17PCh. 7.4 - Prob. 18PCh. 7.4 - Prob. 19PCh. 7.4 - Prob. 20PCh. 7.4 - Prob. 21PCh. 7.4 - Prob. 22PCh. 7.4 - Prob. 23PCh. 7.4 - Prob. 24PCh. 7.4 - Prob. 25PCh. 7.4 - Prob. 26PCh. 7.4 - Prob. 27PCh. 7.4 - Prob. 28PCh. 7.4 - Prob. 29PCh. 7.4 - Prob. 30PCh. 7.4 - Prob. 31PCh. 7.4 - Prob. 32PCh. 7.4 - Prob. 33PCh. 7.4 - Prob. 34PCh. 7.4 - Prob. 35PCh. 7.4 - Prob. 36PCh. 7.4 - Prob. 37PCh. 7.4 - Prob. 38PCh. 7.4 - Prob. 39PCh. 7.4 - Prob. 40PCh. 7.4 - Prob. 41PCh. 7.5 - Prob. 1PCh. 7.5 - Prob. 2PCh. 7.5 - Prob. 3PCh. 7.5 - Prob. 4PCh. 7.5 - Prob. 5PCh. 7.5 - Prob. 6PCh. 7.5 - Prob. 7PCh. 7.5 - Prob. 8PCh. 7.5 - Prob. 9PCh. 7.5 - Prob. 10PCh. 7.5 - Prob. 11PCh. 7.5 - Prob. 12PCh. 7.5 - Prob. 13PCh. 7.5 - Prob. 14PCh. 7.5 - Prob. 15PCh. 7.5 - Prob. 16PCh. 7.5 - Prob. 17PCh. 7.5 - Prob. 18PCh. 7.5 - Prob. 19PCh. 7.5 - Prob. 20PCh. 7.5 - Prob. 21PCh. 7.5 - Prob. 22PCh. 7.5 - Prob. 23PCh. 7.5 - Prob. 24PCh. 7.5 - Prob. 25PCh. 7.5 - Prob. 26PCh. 7.5 - Let g(t) be the staircase function of Fig. 7.5.15....Ch. 7.5 - Suppose that f(i) is a periodic function of period...Ch. 7.5 - Suppose that f(t) is the half-wave rectification...Ch. 7.5 - Let g(t)=u(tk)f(tk), where f(t) is the function of...Ch. 7.5 - Prob. 31PCh. 7.5 - Prob. 32PCh. 7.5 - Prob. 33PCh. 7.5 - Prob. 34PCh. 7.5 - Prob. 35PCh. 7.5 - Prob. 36PCh. 7.5 - Prob. 37PCh. 7.5 - Prob. 38PCh. 7.5 - Prob. 39PCh. 7.5 - Prob. 40PCh. 7.5 - Prob. 41PCh. 7.5 - Prob. 42PCh. 7.6 - Prob. 1PCh. 7.6 - Prob. 2PCh. 7.6 - Prob. 3PCh. 7.6 - Prob. 4PCh. 7.6 - Prob. 5PCh. 7.6 - Prob. 6PCh. 7.6 - Prob. 7PCh. 7.6 - Prob. 8PCh. 7.6 - Prob. 9PCh. 7.6 - Prob. 10PCh. 7.6 - Prob. 11PCh. 7.6 - Prob. 12PCh. 7.6 - Prob. 13PCh. 7.6 - Prob. 14PCh. 7.6 - This problem deals with a mass in on a spring...Ch. 7.6 - Prob. 16PCh. 7.6 - Prob. 17PCh. 7.6 - Prob. 18PCh. 7.6 - Prob. 19PCh. 7.6 - Repeat Problem 19, except suppose that the switch...Ch. 7.6 - Prob. 21PCh. 7.6 - Prob. 22P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Find the differential equation from the transfer of the function for the Giving following system and draw the block diagram of the system. 3 H = x(s) u(s) 0.5s + 1arrow_forwardFind the Bezier Curve which passes through (0,0,0) and (-2,1,1) and is controlled by (7,5,2) and (2,0,1).arrow_forwardNonearrow_forward
- PROBLEM 24 - 0589: A forced oscillator is a system whose behavior can be described by a second-order linear differential equation of the form: ÿ + Ajý + A2y (t) = (1) where A1, A2 are positive %3D E(t) constants and E(t) is an external forcing input. An automobile suspension system, with the road as a vertical forcing input, is a forced oscillator, for example, as shown in Figure #1. Another example is an RLC circuit connected in series with an electromotive force generator E(t), as shown in Figure #2. Given the initial conditions y(0) = Yo and y(0) = zo , write a %3D FORTRAN program that uses the modified Euler method to simulate this system from t = 0 to t = tf if: Case 1: E(t) = h whereh is %3D constant Case 2: E(t) is a pulse of height h and width (t2 - t1) . Case 3: E(t) is a sinusoid of amplitude A, period 2n/w and phase angle p . E(t) is a pulse train Case 4: with height h, width W, period pW and beginning at time t =arrow_forwardSolve for the following higher order mathematical operations a) Find the derivative of f = 5x cos x² with respect to x, and with respect to y. b) Find the second derivative of f = sin(2x) cos(3y) c) Find the integral of f = 3x³y + 4x²y³ - 5xy + 8 with respect to x, and with respect to y d) Find the Laplace transform of f(t) = 3 sinh 2t|arrow_forwardVerify that each function is an "eigenfunction" for the given linear operator, and determine it's eigenvalue. (a) First derivative; f(x) = e³x (b) Second derivative; g(x) = sin(2x)arrow_forward
- From the following function : G = A + B (A+C) + AC Use the theorem of boolean algebra and obtain the reduction of the function, then draw the diagram of that function.arrow_forwardAn aluminum wire having a cross-sectional area equal to 4.60 x 10-6 m? carries a current of 7.50 A. The density of aluminum is 2.70 g/cm³. Assume each aluminum atom supplies one conduction electron per atom. Find the drift speed of the electrons in the wire. 1.95E-4 The equation for the drift velocity includes the number of charge carriers per volume, which in this case is equal to the number of atoms per volume. How do you calculate that if you know the density and the atomic weight of aluminum? mm/sarrow_forwardSolve the initial value problem of the following DE using Laplace Transformarrow_forward
- A tube 1.30 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.357 m long and has a mass of 9.50 g. It is fixed at both ends and oscillates in its fundamental mode. By resonance, it sets the air column in the tube into oscillation at that column's fundamental frequency. Assume that the speed of sound in air is 343 m/s, find (a) that frequency and (b) the tension in the wire. (a) Number i 66.0 (b) Number i Units Hz Unitsarrow_forward3. You have seen how Kirchhoff's laws were used in your lectures to obtain a 2nd order differential equation where we solved for the current. This time we will use an even simpler concept: principle of conservation of energy to derive the 2nd order differential equation where we will solve for the charge. Take a look at the circuit below. IHE 2F In the circuit above, we have a capacitor with capacitance 2 F, an inductor of inductance 5 H and a resistor of 32 (a) The total energy that is supplied to the resistor is LI? E = 2 Q? 20 where L is the inductance, I is the current, C is the capacitance and Q is the charge. Write down the total energy supplied E in terms of Q and t only. OP Remember that I = dt (b) Now you know that the power dissipation through a resistor is -1R. Use the conservation of energy (energy gain rate = energy loss rate) to derive the differential equation in terms Q and t only. (c) Solve the differential equation for initial charge to be Qo with a initial current of…arrow_forward2. The Lorenz equations originating from models of atmospheric physics are given as follows: dr = 10 (y - 2) dt (2a) %3D dy 28r – y -rz (2b) dt dz ay - 2.6666672 (2c) dt with initial conditions r(0) = y(0) = 2(0) = 5. (a) Evaluate the eigenvalues of the Jacobian matrix at t = 0. Is the problem stiff? Estimate the maximum time step that can be selected to keep the solution stable when the fourth-order Runge-Kutta method is used. (b) Solve the given system to t = 50 using the fourth-order Runge-Kutta method. Set the time step to 0.1. Plot the solution. All three functions (2(t), y(t), z(t)) should be present on one plot. • Set the time step to 10 3 and 10 6. Plot r(t) obtained at the three time steps (the first one is 0.1 from above) on one plot. Describe the behaviour. How does the value of the time step affect the result? Set the time step to 10-6 and use the initial conditions r(0) = y(0) = 5.0 and 2(0) = 5.00001. Plot z(t) obtained at the two different sets of initial conditions on…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrOperations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole