INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
14th Edition
ISBN: 9780133918922
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7.4, Problem 119P
To determine
To show: The catenary may be replaced by a parabola in the analysis of problem in which the sag is small.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 4.8 m-long from fixed point, 0.5 m wide and ssumed a thickness of 30 mm troughout a springboard made of high strengh S-2 glassfiber material which weighs 3.6-kN/m. If a diver impacts 30-kN at the free-end of the board when about to dive, calculate:
i. the reaction at the fixed-end of the cantilever and bending moment diagram.
ii. the maximum bending moment in the beam.
if the material Young's Modulus of elasticity is 93.8 GPa find:
iii the maximum slope of the beam.
iv. the maximum deflection in the beam.
v. the maximum strength in the material
A uniform, 7.5-m-long beam weighing 6490 N is hinged to a wall and supported by a thin cable attached 1.5 m from the free end of the beam. The cable runs between the beam and the wall and makes a 40° angle with the beam. What is the tension in the cable when the beam is at an angle of 30° above the horizontal?
Pravinbhai
Chapter 7 Solutions
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Ch. 7.1 - In each case, calculate the reaction at A and then...Ch. 7.1 - Determine the normal force, shear force, and...Ch. 7.1 - Determine the normal force, shear force, and...Ch. 7.1 - Determine the normal force, shear force, and...Ch. 7.1 - Determine the normal force, shear force, and...Ch. 7.1 - Determine the normal force, shear force, and...Ch. 7.1 - Assume A is pinned and B is a roller. Prob. F7-6Ch. 7.1 - Determine the shear force and moment at points C...Ch. 7.1 - Assume the support at B is a roller. Point C is...Ch. 7.1 - Determine the internal normal force, shear force,...
Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - If a force of 20 lb is applied to the handles,...Ch. 7.1 - Determine the distance a as a fraction of the...Ch. 7.1 - Determine the internal shear force and moment...Ch. 7.1 - Determine the internal shear force and moment...Ch. 7.1 - Take P = 8 kN. Prob. 7-9Ch. 7.1 - Determine the largest vertical load P the frame...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Determine the distance a between the bearings in...Ch. 7.1 - Point D is located just to the left of the 5-kip...Ch. 7.1 - The shaft is supported by a journal bearing at A...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Determine the normal force, shear force, and...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Prob. 19PCh. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Point E is located just to the left of 800 N...Ch. 7.1 - Point D is located just to the left of the roller...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Determine the ratio of a/b for which the shear...Ch. 7.1 - Point E is just to the right of the 3-kip load....Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Point D is located just to the left of the 10-kN...Ch. 7.1 - Determine the normal force, shear force, and...Ch. 7.1 - Determine the normal force, shear force, and...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - If the suspended load has a weight of 2 kN and a...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - Determine the internal normal force, shear force,...Ch. 7.1 - The distributed loading W = W0 sin , measured per...Ch. 7.1 - Solve Prob. 7-39 for = 120. Probs. 739/40Ch. 7.1 - z components of force and moment at point C in the...Ch. 7.1 - Determine the x, y, z components of force and...Ch. 7.1 - Determine the x, y, z components of internal...Ch. 7.1 - Determine the x, y. z components of internal...Ch. 7.2 - Determine the shear and moment as a function of x,...Ch. 7.2 - Determine the shear and moment as a function of x,...Ch. 7.2 - Determine the shear and moment as a function of x,...Ch. 7.2 - Determine the shear and moment as a function of x,...Ch. 7.2 - Determine the shear and moment as a function of x,...Ch. 7.2 - Determine the shear and moment as a function of x,...Ch. 7.2 - Draw the shear and moment diagrams for the shaft...Ch. 7.2 - Draw the shear and moment diagrams for the beam...Ch. 7.2 - Draw the shear and moment diagrams for the beam...Ch. 7.2 - Draw the shear and moment diagrams for the...Ch. 7.2 - Draw the shear and moment diagrams of the beam (a)...Ch. 7.2 - If L = 9 m, the beam will fail when the maximum...Ch. 7.2 - Draw the shear and moment diagrams for the beam....Ch. 7.2 - Draw the shear and moment diagrams for the beam....Ch. 7.2 - Draw the shear and bending-moment diagrams for the...Ch. 7.2 - The shaft is supported by a smooth thrust bearing...Ch. 7.2 - Draw the shear and moment diagrams for the beam....Ch. 7.2 - Draw the shear and moment diagrams for the beam....Ch. 7.2 - Draw the shear and moment diagrams for the...Ch. 7.2 - Draw the shear and bending-moment diagrams for...Ch. 7.2 - Draw the shear and moment diagrams for the beam....Ch. 7.2 - The shaft is supported by a smooth thrust bearing...Ch. 7.2 - Draw the shear and moment diagrams for the beam....Ch. 7.2 - The beam will fail when the maximum internal...Ch. 7.2 - Draw the shear and moment diagrams for the beam....Ch. 7.2 - Draw the shear and moment diagrams for the beam....Ch. 7.2 - Draw the shear and moment diagrams for the beam....Ch. 7.2 - Draw the shear and moment diagrams for the beam....Ch. 7.2 - Determine the internal normal force, shear force,...Ch. 7.2 - The quarter circular rod lies in the horizontal...Ch. 7.2 - Express the internal shear and moment components...Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the...Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the shaft....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - The beam consists of three segments pin connected...Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.3 - Draw the shear and moment diagrams for the beam....Ch. 7.4 - The cable supports the three loads shown....Ch. 7.4 - The cable supports the three loads shown....Ch. 7.4 - Determine the tension in each segment of the cable...Ch. 7.4 - The cable supports the loading shown. Determine...Ch. 7.4 - The cable supports the loading shown. Determine...Ch. 7.4 - The cable supports the three loads shown....Ch. 7.4 - The cable supports the three loads shown....Ch. 7.4 - Determine the force P needed to hold the cable in...Ch. 7.4 - Determine the maximum uniform loading w, measured...Ch. 7.4 - The cable is subjected to a uniform loading of w =...Ch. 7.4 - The cable AB is subjected to a uniform loading of...Ch. 7.4 - Prob. 105PCh. 7.4 - If yB = 1.5 ft. determine the largest weight of...Ch. 7.4 - The cable supports a girder which weighs 850...Ch. 7.4 - Prob. 108PCh. 7.4 - If the pipe has a mass per unit length of 1500...Ch. 7.4 - Prob. 110PCh. 7.4 - Determine the maximum tension developed in the...Ch. 7.4 - Prob. 112PCh. 7.4 - The cable is subjected to the parabolic loading w...Ch. 7.4 - The power transmission cable weighs 10 lb/fl. If...Ch. 7.4 - The power transmission cable weighs 10 lb/ft. If h...Ch. 7.4 - The man picks up the 52-ft chain and holds it just...Ch. 7.4 - Prob. 117PCh. 7.4 - Prob. 118PCh. 7.4 - Prob. 119PCh. 7.4 - A telephone line (cable) stretches between two...Ch. 7.4 - Prob. 121PCh. 7.4 - Prob. 122PCh. 7.4 - A cable has a weight of 5 lb/ft. If it can span...Ch. 7.4 - Prob. 124PCh. 7.4 - Determine the internal normal force, shear force,...Ch. 7.4 - Determine the normal force, shear force, and...Ch. 7.4 - Draw the shear and moment diagrams for the beam....Ch. 7.4 - Draw the shear and moment diagrams for the beam....Ch. 7.4 - Draw the shear and moment diagrams for the beam....Ch. 7.4 - Prob. 6RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Answer the following:arrow_forwardThe L-shaped arm ABC shown in the Fig.3 lies in a vertical plane and pivots about a horizontal pin at A. The arm has constant cross-sectional area and total weight W.A vertical spring of stiffness k supports the arm at point B. Obtain a formula for the elongation of the spring due to the weight of the arm. Then use the following numerical data for calculating the value of spring elongation. (k= 20kN/m, b=300mmarrow_forwardO Problem 23.3. A leaf spring has 12 plates each 50 mm wide and 5 mm thick, the longest plate being 600 mm long. The greatest bending stress is not to exceed 180 N/mm² and the central deflection is 15 mm. Estimate the magnitude of the greatest central load(by deflection criteria and bending stress criteria)that can be applied to the spring E= 0.206 x10^6 N/mm²arrow_forward
- P8.5 A beam is subjected to equal bending moments of M₂ = 45 kip-ft, as shown in Figure P8.5a. The cross-sectional dimensions (Figure P8.5b) are b₁ = 7.5 in., d₁ = 1.5 in., b2 = 0.75 in., d2 = 6.0 in., b3 = 3.0 in., and d3 = 2.0 in. Determine: (a) the centroid location, the moment of inertia about the z axis, and the controlling section modulus about the z axis. (b) the bending stress at point H. State whether the normal stress at H is tension or compression. (c) the bending stress at point K. State whether the normal stress at K is tension or compression. (d) the maximum bending stress produced in the cross section. State whether the stress is tension or compression. K M₂ M₂ x H b₂ y b₁ b3 d₂ darrow_forwardProblem 4.30 While the stiffness of an elastic cord can be quite constant (i.e., the force versus displace- ment curve is a straight line) over a large range of stretch, as a bungee cord is stretched, it softens; that is, the cord tends to get less stiff as it gets longer. Assuming a soften- ing force-displacement relation of the form k8 - B83, where 8 (measured in ft) is the displacement of the cord from its unstretched length, considering a bungee cord whose unstretched length is 150 ft, and letting k = 2.58 lb/ft, determine the value of the con- stant B such that a bungee jumper weighing 170 lb and starting from rest gets to the bottom of a 400 ft tower with zero speed.arrow_forwardstrength of materialsarrow_forward
- A composite beam is fabricated by bolting two 3.8-in.-wide by 13-in.-deep timber planks to the sides of a 0.7-in. by 13-in. steel plate. The moduli of elasticity of the timber and the steel are 1730 ksi and 30400 ksi, respectively. The simply supported beam spans a distance of 16 ft and carries two concentrated loads P, which are applied as shown. Assume LAB=LCD= 4 ft, Lgc = 8 ft, b = 3.8 in., d = 13 in. and t = 0.7 in. (a) Determine the maximum bending stresses 0, 0, produced in the timber planks and the steel plate if P = 2.7 kips. (b) Assume that the allowable bending stresses of the timber and the steel are 1430 psi and 18400 psi, respectively. Determine the largest acceptable magnitude for concentrated loads P. (You may neglect the weight of the beam in your calculations.) Answers: (a) o, = (b) P= LAB B LBC 4F Lodlod Cross section P kips. C ksi, 0, = LCD D ksi.arrow_forwardPart b) Bending moment by real forces_1 Let the origin of the horizontal coordinate x be at the support A and the positive x-axis points to the right. The bending moment caused by the real forces as a function of x can be discribed as For 0≤x≤9 m, (please use units kN.m for bending moment) (Use * for multiplication and ^ for exponentiation. For exmple, 2+² can be written as 2*x+x^2)arrow_forward8. A steel beam of uniform cross-section is 6.5 m long and weighs 300 N/rn of length. There are two supports spaced 5 m apart, one of which is located at the end of the beam. Calculate the load required on the free end to just balance the weight of the beamarrow_forward
- A circular solid cross-section cantilever is fixed at one end and bears a concentrated load P at the other. Over a 2m length, the diameter increases uniformly from 200 mm at the free end to 400 mm at the fixed end. At what distance from the free end will the bending stress in the cantilever be maximum? If the concentrated load P=30 KN, what is the maximum bending stressarrow_forwardA circular plate with simply supported edges subjected to a uniform pressure of P=440 KPa, as shown below, is considered. The plate thickness is h=7 mm, and the plate radius is RO=1,390 mm. If Young's modules and Poisson's ratio are assumed to be E-52 GPa and 1=0.5, respectively, workout the absolute maximum deflection of the plate in mm. (NOTE: round-off your answer to 4 decimal places, and write your answer without considering the negative (-) sign). 5 Lr> P Roarrow_forwardThe cantilever beam in Fig. (a) carries a triangular load, the intensity of which varies from zero at the left end to 360 lb/ft at the right end. In addition, a 1000-lb upward vertical load acts at the free end of the beam. (1) Derive the shear force and bending moment equations, and (2) draw the shear force and bending moment diagrams. Neglect the weight of the beamarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Engineering Basics - Statics & Forces in Equilibrium; Author: Solid Solutions - Professional Design Solutions;https://www.youtube.com/watch?v=dQBvQ2hJZFg;License: Standard YouTube License, CC-BY