![Calculus Volume 3](https://www.bartleby.com/isbn_cover_images/9781938168079/9781938168079_largeCoverImage.gif)
Concept explainers
Landing Vehicle
NASA is planning a mission to Mars. To save money, engineers have decided to adapt one of the moon landing vehicles for the new mission. However, they are concerned about how the different gravitational forces will affect the suspension system that cushions the craft when it touches down. The acceleration resulting from gravity on the moon is 1.6 m/sec2, whereas on Mars it is 3.7 m/sec2.
The suspension system on the craft can be modeled as a damped spring mass system. In this case, the spring is below the moon lander, so the spring is slightly compressed at equilibrium, as shown in Figure 7.12.
Figure 7.12 The landing craft suspension can be represented as a damped spring-mass system. (credit “lander": NASA)
We retain the convention that down is positive. Despite the new orientation, an examination of the forces affecting the lander shows that the same differential equation can be used to model the position of the landing craft relative to equilibrium:
where m is the mass of the lander, b is the damping coef?cient, and k is the spring constant.
5. If the lander crew uses the same procedures on Mars as an the moon, and keeps the rate of descent to 2 m/sec, will the lander bottom out when it lands on Mars?
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 7 Solutions
Calculus Volume 3
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Calculus: Early Transcendentals (2nd Edition)
A First Course in Probability (10th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics (13th Edition)
- 2 (VaR and ES) Suppose X1 are independent. Prove that ~ Unif[-0.5, 0.5] and X2 VaRa (X1X2) < VaRa(X1) + VaRa (X2). ~ Unif[-0.5, 0.5]arrow_forward8 (Correlation and Diversification) Assume we have two stocks, A and B, show that a particular combination of the two stocks produce a risk-free portfolio when the correlation between the return of A and B is -1.arrow_forward9 (Portfolio allocation) Suppose R₁ and R2 are returns of 2 assets and with expected return and variance respectively r₁ and 72 and variance-covariance σ2, 0%½ and σ12. Find −∞ ≤ w ≤ ∞ such that the portfolio wR₁ + (1 - w) R₂ has the smallest risk.arrow_forward
- 7 (Multivariate random variable) Suppose X, €1, €2, €3 are IID N(0, 1) and Y2 Y₁ = 0.2 0.8X + €1, Y₂ = 0.3 +0.7X+ €2, Y3 = 0.2 + 0.9X + €3. = (In models like this, X is called the common factors of Y₁, Y₂, Y3.) Y = (Y1, Y2, Y3). (a) Find E(Y) and cov(Y). (b) What can you observe from cov(Y). Writearrow_forward1 (VaR and ES) Suppose X ~ f(x) with 1+x, if 0> x > −1 f(x) = 1−x if 1 x > 0 Find VaRo.05 (X) and ES0.05 (X).arrow_forward(^) k Recall that for numbers 0 ≤ k ≤ n the binomial coefficient (^) is defined as n! k! (n−k)! Question 1. (1) Prove the following identity: (22) + (1121) = (n+1). (2) Use the identity above to prove the binomial theorem by induction. That is, prove that for any a, b = R, n (a + b)" = Σ (^) an- n-kyk. k=0 n Recall that Σ0 x is short hand notation for the expression x0+x1+ +xn- (3) Fix x = R, x > 0. Prove Bernoulli's inequality: (1+x)" ≥1+nx, by using the binomial theorem. - Question 2. Prove that ||x| - |y|| ≤ |x − y| for any real numbers x, y. Question 3. Assume (In) nEN is a sequence which is unbounded above. That is, the set {xn|nЄN} is unbounded above. Prove that there are natural numbers N] k for all k Є N. be natural numbers (nk Є N). Prove thatarrow_forward
- Question content area top Part 1 Find the measure of ABC for the congruent triangles ABC and Upper A prime Upper B prime Upper C primeA′B′C′. 79 degrees79° 1533 2930 Part 1 m ABCequals=enter your response heredegreesarrow_forwardJoy is making Christmas gifts. She has 6 1/12 feet of yarn and will need 4 1/4 to complete our project. How much yarn will she have left over compute this solution in two different ways arrow_forwardSolve for X. Explain each step. 2^2x • 2^-4=8arrow_forward
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780998625713/9780998625713_smallCoverImage.jpg)