In Exercises 3-6, find (a) the maximum value of Q(x) subject to the constraint xTx = 1, (b) a unit
4.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Linear Algebra and Its Applications (5th Edition)
Additional Math Textbook Solutions
College Algebra Essentials (5th Edition)
Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Intermediate Algebra for College Students (7th Edition)
Beginning and Intermediate Algebra (6th Edition)
- Find (a) the maximum value of Q(x) subject to the constraint x x = 1, (b) a unit vector u where this maximum is attained, and (c) the maximum value of Q(x) subject to the constraints x x = 1 and xTu=0. Q(x) = 2x2 - 10x2-16x₁x2arrow_forward= Identify the maximum value and the corresponding unite vector of the quadratic form Q = x1 1. 3x² - 4x1x2 + 3x² under the constraint: ||☎|| = || || x2arrow_forwardA certain country uses a progressive tax system. The amount of tax consists of a linear part proportional to the income and a nonlinear part depending on the income by a power law. The total amount of tax is determined by the formula T(W)=aW+(bW+c)p, where W is the income; p is the exponent, a,b,c are some positive numbers. At what level of income the tax rate will be minimal?arrow_forward
- 8.) Find a vector x such that 5x-2v=2(u-5x) SOLUTIONarrow_forward1 (a) Is the vector| 2 in the span of -1 and 2 ? Justify your answer 3 3 2 2 (b) Is the set linearly independent or linearly dependent? Justify your answer.arrow_forwardEXERCISE 5. Consider the function f(x, y) = x(1- y²) in the domain {(x, y): x² + y² = 1}. (a) Indicate if you have reasons to assess existence or nonexistence of max and min; (b) compute max and min (if they exist); (c) estimate max and min (those which exist) when the constraint be- comes x² + y² = 1.4.arrow_forward
- тах 2х, + Зх2 — Хз s.t X1 + 2x, + x3 = 5 (1) -X1 + x2 + x3 >1 (2) X1 + x2 + 2x3 <8 (3) X1 2 0 (4) X2 2 0 (5) a. Which constraints are active at the point (2, 0, 3)? b. Is the direction d=(-1, 1, -1) a feasible direction at (2, 0, 3)? c. Is the direction d=(-1, 1, -1) an improving direction at (2, 0, 3)? d. Could the point (2, 0, 3) be an optimal solution to the linear program? e. Is the point (2, 0, 3) a basic solution? Justify your answer. f. Is the point (2, 0, 3) an extreme point? Justify your answer. g. Is the point (2, 0, 3) degenerate?arrow_forwardLet x(¹) (t) = -3t e 4e-3t, 0 x (²) (t) = [_5e-³]; x (³) (t) = -5e-3t, Are the vectors x(¹) (t), x(²) (t) and x(³) (t) linearly independent? choose ◆ If the vectors are independent, enter zero in every answer blank since those are only the values that make the equation below true. If they are dependent, find numbers, not all zero, that make the equation below true. You should be able to explain and justify your answer. 0 -3t [8] = 0[*]+[-+* 0 [4e-3t -5e-3t -0[ + -5e-3t -35e-3t -5e-3t -35e-3tarrow_forward2) Determine if the vectors are Linearly Independent or Linearly Dependent. - 5 -2 =2x(2) -3 x3) -(3) – 13] 4arrow_forward
- 6. Let -1 1 -3 -3 3 Find a non-zero vector x that maximizes the ratio. What is this maximum value? 3 1 A = please answer in typing formatarrow_forwardIn each part, determine whether the vectors are linearly independent or are linearly dependent in P2. (a) 4 – x+ 4x²,4 + 2x + 2x², 4 + 6x – 4x? (b) 1+ 3x + 5x²,x + 4x²,4 + 6x + 5x²,2 + 5x – x²arrow_forwardThere are currently 3 machines in a factory: P1, P2, and P3. Assume that this rectilinear shaped factory is located on the first quadrant of the coordinate system and one corner is at the origin (point (0,0)). The coordinates of the existing machines are as follows:P1=(10,15), P2=(20,25) ve P3=(40,5)To meet the increasing demand and respond to changing customer demands, the company decided to grow and acquired two new machines: N1 and N2. When these two machines are put into operation, they will exchange materials with each other and with the other three machines. 400 units of material will be transported between the2two new machines in a week. Similarly, 400 units will be transported between N1 and P1, 0 between N1 and P2, and 500 units between N1 and P3. The transportation between N2 and P1, P2, and P3 are 200, 100, and 0, respectively.Materials are transported with an overhead crane. This crane can move linearly in x and y coordinates and can move simultaneously in both directions.…arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education