Using a P-Value with a t -Test In Exercises 27–30, (a) identify the claim and state H 0 and H a , (b) use technology to find the P-value, (c) decide whether to reject or fail to reject the null hypothesis, and (d) interpret the decision in the context of the original claim. Assume the population is normally distributed. 29. Class Size You receive a brochure from a large university. The brochure indicates that the mean class size for full-time faculty is fewer than 32 students. You want to test this claim. You randomly select 18 classes taught by full-time faculty and determine the class size of each. The results are shown in the table at the left. At α = 0.05, can you support the university’s claim?
Using a P-Value with a t -Test In Exercises 27–30, (a) identify the claim and state H 0 and H a , (b) use technology to find the P-value, (c) decide whether to reject or fail to reject the null hypothesis, and (d) interpret the decision in the context of the original claim. Assume the population is normally distributed. 29. Class Size You receive a brochure from a large university. The brochure indicates that the mean class size for full-time faculty is fewer than 32 students. You want to test this claim. You randomly select 18 classes taught by full-time faculty and determine the class size of each. The results are shown in the table at the left. At α = 0.05, can you support the university’s claim?
Solution Summary: The claim is that the mean class size for full-time faculty is fewer than 32 students. The alternative hypothesis indicates the claim.
Using a P-Value with a t-TestIn Exercises 27–30, (a) identify the claim and state H0 and Ha, (b) use technology to find the P-value, (c) decide whether to reject or fail to reject the null hypothesis, and (d) interpret the decision in the context of the original claim. Assume the population is normally distributed.
29. Class Size You receive a brochure from a large university. The brochure indicates that the mean class size for full-time faculty is fewer than 32 students. You want to test this claim. You randomly select 18 classes taught by full-time faculty and determine the class size of each. The results are shown in the table at the left. At α = 0.05, can you support the university’s claim?
Features Features Normal distribution is characterized by two parameters, mean (µ) and standard deviation (σ). When graphed, the mean represents the center of the bell curve and the graph is perfectly symmetric about the center. The mean, median, and mode are all equal for a normal distribution. The standard deviation measures the data's spread from the center. The higher the standard deviation, the more the data is spread out and the flatter the bell curve looks. Variance is another commonly used measure of the spread of the distribution and is equal to the square of the standard deviation.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Hypothesis Testing using Confidence Interval Approach; Author: BUM2413 Applied Statistics UMP;https://www.youtube.com/watch?v=Hq1l3e9pLyY;License: Standard YouTube License, CC-BY
Hypothesis Testing - Difference of Two Means - Student's -Distribution & Normal Distribution; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=UcZwyzwWU7o;License: Standard Youtube License