Calculus: Early Transcendentals (3rd Edition)
3rd Edition
ISBN: 9780134770468
Author: Briggs
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7.3, Problem 21E
Derivative formulas Derive the following derivative formulas given that d/dx(cosh x) = sinh x and d/dx(sinh x) = cosh x.
21. d/dx(csch x) = −csch x coth x
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
=
Let (6,2,-5) and = (5,4, -6).
Compute the following:
บี.บี.
บี. นี =
2
−4(u. v) =
(-4). v=
ū. (-40)
(ū. v) v =
Let ā-6+4j- 1k and b = 7i8j+3k. Find a. b.
Find the volume of the parallelepiped determined by the vectors a = (3, 5, −1), ☎ = (0, 3, 1),
c = (2,4,1).
Chapter 7 Solutions
Calculus: Early Transcendentals (3rd Edition)
Ch. 7.1 - What is the domain of ln |x|?Ch. 7.1 - Simplify e ln 2x, ln (e2x), e2 ln x, and ln (2ex)Ch. 7.1 - What is the slope of the curve y = ex at x= ln 2?...Ch. 7.1 - Verify that the derivative and integral results...Ch. 7.1 - Prob. 1ECh. 7.1 - Prob. 2ECh. 7.1 - Evaluate 4xdx.Ch. 7.1 - What is the inverse function of ln x, and what are...Ch. 7.1 - Express 3x, x, and xsin x using the base e.Ch. 7.1 - Evaluate ddx(3x).
Ch. 7.1 - Derivatives Evaluate the following derivatives...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Prob. 24ECh. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals Evaluate the following integrals....Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals Evaluate the following integrals....Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Integrals Evaluate the following integrals....Ch. 7.1 - Integrals Evaluate the following integrals....Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Calculator limits Use a calculator to make a table...Ch. 7.1 - Calculator limits Use a calculator to make a table...Ch. 7.1 - Calculator limits Use a calculator to make a table...Ch. 7.1 - Calculator limits Use a calculator to make a table...Ch. 7.1 - Prob. 67ECh. 7.1 - Prob. 68ECh. 7.1 - Prob. 69ECh. 7.1 - Prob. 70ECh. 7.1 - Prob. 71ECh. 7.1 - Prob. 72ECh. 7.1 - Prob. 73ECh. 7.1 - Prob. 74ECh. 7.1 - Prob. 75ECh. 7.1 - Prob. 76ECh. 7.1 - Harmonic sum In Chapter 10, we will encounter the...Ch. 7.1 - Probability as an integral Two points P and Q are...Ch. 7.2 - Population A increases at a constant rate of...Ch. 7.2 - Verify that the time needed for y(t) = y0ekt. to...Ch. 7.2 - Assume y() 100e0.005, 3y (exactly) what...Ch. 7.2 - If a quantity decreases by a factor of 8 every 30...Ch. 7.2 - In terms of relative growth rate, what is the...Ch. 7.2 - Prob. 2ECh. 7.2 - Prob. 3ECh. 7.2 - Prob. 4ECh. 7.2 - Prob. 5ECh. 7.2 - Prob. 6ECh. 7.2 - Suppose a quantity described by the function y(t)...Ch. 7.2 - Suppose a quantity is described by the function...Ch. 7.2 - Give two examples of processes that are modeled by...Ch. 7.2 - Give two examples of processes that are modeled by...Ch. 7.2 - Because of the absence of predators, the number of...Ch. 7.2 - After the introduction of foxes on an island, the...Ch. 7.2 - Absolute and relative growth rates Two functions f...Ch. 7.2 - Absolute and relative growth rates Two functions f...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Determining APY Suppose 1000 is deposited in a...Ch. 7.2 - Tortoise growth In a study conducted at University...Ch. 7.2 - Projection sensitivity According to the 2014...Ch. 7.2 - Energy consumption On the first day of the year (t...Ch. 7.2 - Population of Texas Texas was the third fastest...Ch. 7.2 - Oil consumption Starting in 2018 (t = 0), the rate...Ch. 7.2 - Designing exponential decay functions Devise an...Ch. 7.2 - Designing exponential decay functions Devise an...Ch. 7.2 - Designing exponential decay functions Devise an...Ch. 7.2 - Designing exponential decay functions Devise an...Ch. 7.2 - Population of West Virginia The population of West...Ch. 7.2 - Prob. 32ECh. 7.2 - Atmospheric pressure The pressure of Earths...Ch. 7.2 - Carbon dating The half-life of C-14 is about 5730...Ch. 7.2 - Uranium dating Uranium-238 (U-238) has a half-life...Ch. 7.2 - Radioiodine treatment Roughly 12,000 Americans are...Ch. 7.2 - Caffeine After an individual drinks a beverage...Ch. 7.2 - Caffeine After an individual drinks a beverage...Ch. 7.2 - Prob. 39ECh. 7.2 - Prob. 40ECh. 7.2 - Tumor growth Suppose the cells of a tumor are...Ch. 7.2 - Tripling time A quantity increases according to...Ch. 7.2 - Explain why or why not Determine whether the...Ch. 7.2 - A running model A model for the startup of a...Ch. 7.2 - Prob. 45ECh. 7.2 - Prob. 46ECh. 7.2 - A slowing race Starting at the same time and...Ch. 7.2 - Prob. 48ECh. 7.2 - Compounded inflation The U.S. government reports...Ch. 7.2 - Acceleration, velocity, position Suppose the...Ch. 7.2 - Air resistance (adapted from Putnam Exam, 1939) An...Ch. 7.2 - General relative growth rates Define the relative...Ch. 7.2 - Equivalent growth functions The same exponential...Ch. 7.2 - Geometric means A quantity grows exponentially...Ch. 7.2 - Constant doubling time Prove that the doubling...Ch. 7.3 - Use the definition of the hyperbolic sine to show...Ch. 7.3 - Explain why the graph of tanh x has the horizontal...Ch. 7.3 - Find both the derivative and indefinite integral...Ch. 7.3 - Prob. 4QCCh. 7.3 - Prob. 5QCCh. 7.3 - Prob. 6QCCh. 7.3 - Explain why longer waves travel faster than...Ch. 7.3 - State the definition of the hyperbolic cosine and...Ch. 7.3 - Sketch the graphs of y = cosh x, y sinh x, and y...Ch. 7.3 - What is the fundamental identity for hyperbolic...Ch. 7.3 - Prob. 4ECh. 7.3 - Express sinh1 x in terms of logarithms.Ch. 7.3 - Prob. 6ECh. 7.3 - Prob. 7ECh. 7.3 - On what interval is the formula d/dx (tanh1 x) =...Ch. 7.3 - Prob. 9ECh. 7.3 - Prob. 10ECh. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Use the given identity to...Ch. 7.3 - Verifying identities Use the given identity to...Ch. 7.3 - Prob. 18ECh. 7.3 - Derivative formulas Derive the following...Ch. 7.3 - Derivative formulas Derive the following...Ch. 7.3 - Derivative formulas Derive the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Prob. 30ECh. 7.3 - Derivatives Find the derivatives of the following...Ch. 7.3 - Derivatives Find the derivatives of the following...Ch. 7.3 - Derivatives Find the derivatives of the following...Ch. 7.3 - Derivatives Find the derivatives of the following...Ch. 7.3 - Prob. 35ECh. 7.3 - Prob. 36ECh. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Integrals Evaluate each integral. sech2wtanhwdwCh. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Definite integrals Evaluate each definite...Ch. 7.3 - Integrals Evaluate each integral. 0ln2sech2xxdxCh. 7.3 - Definite integrals Evaluate each definite...Ch. 7.3 - Definite integrals Evaluate each definite...Ch. 7.3 - Indefinite integrals Determine the following...Ch. 7.3 - Integrals Evaluate each integral. 48.dxx216,x4Ch. 7.3 - Indefinite integrals Determine the following...Ch. 7.3 - Prob. 50ECh. 7.3 - Indefinite integrals Determine the following...Ch. 7.3 - Prob. 52ECh. 7.3 - Additional integrals Evaluate the following...Ch. 7.3 - Additional integrals Evaluate the following...Ch. 7.3 - Prob. 55ECh. 7.3 - Additional integrals Evaluate the following...Ch. 7.3 - Two ways Evaluate the following integrals two...Ch. 7.3 - Two ways Evaluate the following integrals two...Ch. 7.3 - Visual approximation a. Use a graphing utility to...Ch. 7.3 - Prob. 60ECh. 7.3 - Prob. 61ECh. 7.3 - Points of intersection and area a. Sketch the...Ch. 7.3 - Definite integrals Evaluate the following definite...Ch. 7.3 - Definite integrals Evaluate the following definite...Ch. 7.3 - Definite integrals Evaluate the following definite...Ch. 7.3 - Prob. 66ECh. 7.3 - Prob. 67ECh. 7.3 - Prob. 68ECh. 7.3 - Catenary arch The portion of the curve y=1716coshx...Ch. 7.3 - Length of a catenary Show that the arc length of...Ch. 7.3 - Power lines A power line is attached at the same...Ch. 7.3 - Sag angle Imagine a climber clipping onto the rope...Ch. 7.3 - Wavelength The velocity of a surface wave on the...Ch. 7.3 - Prob. 74ECh. 7.3 - Prob. 75ECh. 7.3 - Prob. 76ECh. 7.3 - Explain why or why not Determine whether the...Ch. 7.3 - Evaluating hyperbolic functions Use a calculator...Ch. 7.3 - Evaluating hyperbolic functions Evaluate each...Ch. 7.3 - Prob. 80ECh. 7.3 - Critical points Find the critical points of the...Ch. 7.3 - Critical points a. Show that the critical points...Ch. 7.3 - Points of inflection Find the x-coordinate of the...Ch. 7.3 - Prob. 84ECh. 7.3 - Area of region Find the area of the region bounded...Ch. 7.3 - Prob. 86ECh. 7.3 - LHpital loophole Explain why lHpitals Rule fails...Ch. 7.3 - Limits Use lHpitals Rule to evaluate the following...Ch. 7.3 - Limits Use lHpitals Rule to evaluate the following...Ch. 7.3 - Prob. 90ECh. 7.3 - Prob. 91ECh. 7.3 - Prob. 92ECh. 7.3 - Kiln design Find the volume interior to the...Ch. 7.3 - Prob. 94ECh. 7.3 - Falling body When an object falling from rest...Ch. 7.3 - Prob. 96ECh. 7.3 - Prob. 97ECh. 7.3 - Prob. 98ECh. 7.3 - Differential equations Hyperbolic functions are...Ch. 7.3 - Prob. 100ECh. 7.3 - Prob. 101ECh. 7.3 - Prob. 102ECh. 7.3 - Prob. 103ECh. 7.3 - Prob. 104ECh. 7.3 - Prob. 105ECh. 7.3 - Theorem 7.8 a. The definition of the inverse...Ch. 7.3 - Prob. 107ECh. 7.3 - Prob. 108ECh. 7.3 - Arc length Use the result of Exercise 108 to find...Ch. 7.3 - Prob. 110ECh. 7.3 - Prob. 111ECh. 7.3 - Definitions of hyperbolic sine and cosine Complete...Ch. 7 - Explain why or why not Determine whether the...Ch. 7 - Integrals Evaluate the following integrals. 56....Ch. 7 - Integrals Evaluate the following integrals. 57....Ch. 7 - Integrals Evaluate the following integrals. 58....Ch. 7 - Integrals Evaluate the following integrals. 59....Ch. 7 - Integrals Evaluate the following integrals. 60....Ch. 7 - Integrals Evaluate the following integrals. 61....Ch. 7 - Integrals Evaluate the following integrals. 62....Ch. 7 - Integrals Evaluate the following integrals. 63....Ch. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Prob. 14RECh. 7 - Prob. 15RECh. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Prob. 17RECh. 7 - Prob. 18RECh. 7 - Prob. 19RECh. 7 - Population growth The population of a large city...Ch. 7 - Caffeine An adult consumes an espresso containing...Ch. 7 - Two cups of coffee A college student consumed two...Ch. 7 - Moores Law In 1965, Gordon Moore observed that the...Ch. 7 - Radioactive decay The mass of radioactive material...Ch. 7 - Population growth Growing from an initial...Ch. 7 - Prob. 26RECh. 7 - Prob. 27RECh. 7 - Curve sketching Use the graphing techniques of...Ch. 7 - Prob. 29RECh. 7 - Prob. 30RECh. 7 - Linear approximation Find the linear approximation...Ch. 7 - Limit Evaluate limx(tanhx)x.Ch. 7 - Derivatives of hyperbolic functions Compute the...Ch. 7 - Arc length Find the arc length of the curve y = ln...
Additional Math Textbook Solutions
Find more solutions based on key concepts
The total amount to the nearest cent.
Pre-Algebra Student Edition
In hypothesis testing, the common level of significance is =0.05. Some might argue for a level of significance ...
Basic Business Statistics, Student Value Edition
In Exercises 13-20, express the indicated degree of likelihood as a probability value between 0 and 1.
15. Lugg...
Elementary Statistics (13th Edition)
Assessment 1-1A Cookies are sold singly or in packages of 2 or 6. With this packaging, how many ways can you bu...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Fill in each blank so that the resulting statement is true. Any set of ordered pairs is called a/an ____.The se...
Algebra and Trigonometry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Find the area of a triangle PQR, where P = (-5,6, -1), Q = (1, -3, -2), and R = (-5, -1,4)arrow_forward17. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.2.050. Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) du 4√3- -4² Need Help? Read It SUBMIT ANSWER 18. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.2.051. Evaluate the integral. (Use C for the constant of integration.) - 49 dx x² +3 Need Help? Read It Watch It SUBMIT ANSWER 19. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.2.057. Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) 25+ x2 dxarrow_forwardLet (5,3,-7) and = (2, -3, -6). = Compute the following: u× u = -4(u xv) ux (-4v) (+v) × v=arrow_forward
- Let a = (4, -2, -7) and 6 = (2,5, 3). (ã − ò) × (ã + b) =arrow_forwardUse the graph of the function y = f (x) to find the value, if possible. f(x) 8 7 6 Q5 y 3 2 1 x -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 -1 -2 -3 -4 -5 -6 -7 -8+ Olim f(z) x-1+ O Limit does not exist.arrow_forwardIf h(x) = -2x-8 49x2-9 what is lim h(x)? x--00arrow_forward
- Question Find the following limit. Select the correct answer below: ○ 0 ○ 3 ○ 6 ∞ 6x + 3e lim 00+2 x 2arrow_forwardWhat is the limit as x → ∞ of t(x) = = √81x2 -3x+5arrow_forwardConsider the graphs of y = f(x) and y = g(x) in the given diagram y= f(x). y = g(x) Evaluate (f+g)(2) -5 Determine all for which g(x) < f(x) Determine all for which f(x) +3 = g(x)arrow_forward
- I) For what value(s) of x does g(x) = -4? Separate multiple answers with commas as needed. J) Give the interval(s) of such that g(x) > 0. Use the union symbol between multiple intervals. K) Give the interval(s) of such that g(x) <0. Use the union symbol between multiple intervals.arrow_forwardneed help on Barrow_forward4. Use the properties of limits to help decide whether each limit exists. If a limit exists, fi lim (2x²-4x+5) a) x-4 b) lim 2 x²-16 x-4x+2x-8arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Chain Rule dy:dx = dy:du*du:dx; Author: Robert Cappetta;https://www.youtube.com/watch?v=IUYniALwbHs;License: Standard YouTube License, CC-BY
CHAIN RULE Part 1; Author: Btech Maths Hub;https://www.youtube.com/watch?v=TIAw6AJ_5Po;License: Standard YouTube License, CC-BY