
Calculus: Early Transcendentals (3rd Edition)
3rd Edition
ISBN: 9780134770468
Author: Briggs
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 11RE
Derivatives Find the derivatives of the following functions.
11.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz).
Ꮖ
(a) (4 points) Show that V x F = 0.
(b) (4 points) Find a potential f for the vector field F.
(c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use
Stokes' Theorem to calculate the line integral
Jos
F.ds;
as denotes the boundary of S. Explain your answer.
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
Chapter 7 Solutions
Calculus: Early Transcendentals (3rd Edition)
Ch. 7.1 - What is the domain of ln |x|?Ch. 7.1 - Simplify e ln 2x, ln (e2x), e2 ln x, and ln (2ex)Ch. 7.1 - What is the slope of the curve y = ex at x= ln 2?...Ch. 7.1 - Verify that the derivative and integral results...Ch. 7.1 - Prob. 1ECh. 7.1 - Prob. 2ECh. 7.1 - Evaluate 4xdx.Ch. 7.1 - What is the inverse function of ln x, and what are...Ch. 7.1 - Express 3x, x, and xsin x using the base e.Ch. 7.1 - Evaluate ddx(3x).
Ch. 7.1 - Derivatives Evaluate the following derivatives...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives with ln x Evaluate the following...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Derivatives Evaluate the derivatives of the...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Prob. 24ECh. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Miscellaneous derivatives Compute the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals Evaluate the following integrals....Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ln x Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with ex Evaluate the following...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals with general bases Evaluate the...Ch. 7.1 - Integrals Evaluate the following integrals....Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Integrals Evaluate the following integrals....Ch. 7.1 - Integrals Evaluate the following integrals....Ch. 7.1 - Miscellaneous integrals Evaluate the following...Ch. 7.1 - Calculator limits Use a calculator to make a table...Ch. 7.1 - Calculator limits Use a calculator to make a table...Ch. 7.1 - Calculator limits Use a calculator to make a table...Ch. 7.1 - Calculator limits Use a calculator to make a table...Ch. 7.1 - Prob. 67ECh. 7.1 - Prob. 68ECh. 7.1 - Prob. 69ECh. 7.1 - Prob. 70ECh. 7.1 - Prob. 71ECh. 7.1 - Prob. 72ECh. 7.1 - Prob. 73ECh. 7.1 - Prob. 74ECh. 7.1 - Prob. 75ECh. 7.1 - Prob. 76ECh. 7.1 - Harmonic sum In Chapter 10, we will encounter the...Ch. 7.1 - Probability as an integral Two points P and Q are...Ch. 7.2 - Population A increases at a constant rate of...Ch. 7.2 - Verify that the time needed for y(t) = y0ekt. to...Ch. 7.2 - Assume y() 100e0.005, 3y (exactly) what...Ch. 7.2 - If a quantity decreases by a factor of 8 every 30...Ch. 7.2 - In terms of relative growth rate, what is the...Ch. 7.2 - Prob. 2ECh. 7.2 - Prob. 3ECh. 7.2 - Prob. 4ECh. 7.2 - Prob. 5ECh. 7.2 - Prob. 6ECh. 7.2 - Suppose a quantity described by the function y(t)...Ch. 7.2 - Suppose a quantity is described by the function...Ch. 7.2 - Give two examples of processes that are modeled by...Ch. 7.2 - Give two examples of processes that are modeled by...Ch. 7.2 - Because of the absence of predators, the number of...Ch. 7.2 - After the introduction of foxes on an island, the...Ch. 7.2 - Absolute and relative growth rates Two functions f...Ch. 7.2 - Absolute and relative growth rates Two functions f...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Designing exponential growth functions Complete...Ch. 7.2 - Determining APY Suppose 1000 is deposited in a...Ch. 7.2 - Tortoise growth In a study conducted at University...Ch. 7.2 - Projection sensitivity According to the 2014...Ch. 7.2 - Energy consumption On the first day of the year (t...Ch. 7.2 - Population of Texas Texas was the third fastest...Ch. 7.2 - Oil consumption Starting in 2018 (t = 0), the rate...Ch. 7.2 - Designing exponential decay functions Devise an...Ch. 7.2 - Designing exponential decay functions Devise an...Ch. 7.2 - Designing exponential decay functions Devise an...Ch. 7.2 - Designing exponential decay functions Devise an...Ch. 7.2 - Population of West Virginia The population of West...Ch. 7.2 - Prob. 32ECh. 7.2 - Atmospheric pressure The pressure of Earths...Ch. 7.2 - Carbon dating The half-life of C-14 is about 5730...Ch. 7.2 - Uranium dating Uranium-238 (U-238) has a half-life...Ch. 7.2 - Radioiodine treatment Roughly 12,000 Americans are...Ch. 7.2 - Caffeine After an individual drinks a beverage...Ch. 7.2 - Caffeine After an individual drinks a beverage...Ch. 7.2 - Prob. 39ECh. 7.2 - Prob. 40ECh. 7.2 - Tumor growth Suppose the cells of a tumor are...Ch. 7.2 - Tripling time A quantity increases according to...Ch. 7.2 - Explain why or why not Determine whether the...Ch. 7.2 - A running model A model for the startup of a...Ch. 7.2 - Prob. 45ECh. 7.2 - Prob. 46ECh. 7.2 - A slowing race Starting at the same time and...Ch. 7.2 - Prob. 48ECh. 7.2 - Compounded inflation The U.S. government reports...Ch. 7.2 - Acceleration, velocity, position Suppose the...Ch. 7.2 - Air resistance (adapted from Putnam Exam, 1939) An...Ch. 7.2 - General relative growth rates Define the relative...Ch. 7.2 - Equivalent growth functions The same exponential...Ch. 7.2 - Geometric means A quantity grows exponentially...Ch. 7.2 - Constant doubling time Prove that the doubling...Ch. 7.3 - Use the definition of the hyperbolic sine to show...Ch. 7.3 - Explain why the graph of tanh x has the horizontal...Ch. 7.3 - Find both the derivative and indefinite integral...Ch. 7.3 - Prob. 4QCCh. 7.3 - Prob. 5QCCh. 7.3 - Prob. 6QCCh. 7.3 - Explain why longer waves travel faster than...Ch. 7.3 - State the definition of the hyperbolic cosine and...Ch. 7.3 - Sketch the graphs of y = cosh x, y sinh x, and y...Ch. 7.3 - What is the fundamental identity for hyperbolic...Ch. 7.3 - Prob. 4ECh. 7.3 - Express sinh1 x in terms of logarithms.Ch. 7.3 - Prob. 6ECh. 7.3 - Prob. 7ECh. 7.3 - On what interval is the formula d/dx (tanh1 x) =...Ch. 7.3 - Prob. 9ECh. 7.3 - Prob. 10ECh. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Verify each identity using...Ch. 7.3 - Verifying identities Use the given identity to...Ch. 7.3 - Verifying identities Use the given identity to...Ch. 7.3 - Prob. 18ECh. 7.3 - Derivative formulas Derive the following...Ch. 7.3 - Derivative formulas Derive the following...Ch. 7.3 - Derivative formulas Derive the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Derivatives Compute dy/dx for the following...Ch. 7.3 - Prob. 30ECh. 7.3 - Derivatives Find the derivatives of the following...Ch. 7.3 - Derivatives Find the derivatives of the following...Ch. 7.3 - Derivatives Find the derivatives of the following...Ch. 7.3 - Derivatives Find the derivatives of the following...Ch. 7.3 - Prob. 35ECh. 7.3 - Prob. 36ECh. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Integrals Evaluate each integral. sech2wtanhwdwCh. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Indefinite integrals Determine each indefinite...Ch. 7.3 - Definite integrals Evaluate each definite...Ch. 7.3 - Integrals Evaluate each integral. 0ln2sech2xxdxCh. 7.3 - Definite integrals Evaluate each definite...Ch. 7.3 - Definite integrals Evaluate each definite...Ch. 7.3 - Indefinite integrals Determine the following...Ch. 7.3 - Integrals Evaluate each integral. 48.dxx216,x4Ch. 7.3 - Indefinite integrals Determine the following...Ch. 7.3 - Prob. 50ECh. 7.3 - Indefinite integrals Determine the following...Ch. 7.3 - Prob. 52ECh. 7.3 - Additional integrals Evaluate the following...Ch. 7.3 - Additional integrals Evaluate the following...Ch. 7.3 - Prob. 55ECh. 7.3 - Additional integrals Evaluate the following...Ch. 7.3 - Two ways Evaluate the following integrals two...Ch. 7.3 - Two ways Evaluate the following integrals two...Ch. 7.3 - Visual approximation a. Use a graphing utility to...Ch. 7.3 - Prob. 60ECh. 7.3 - Prob. 61ECh. 7.3 - Points of intersection and area a. Sketch the...Ch. 7.3 - Definite integrals Evaluate the following definite...Ch. 7.3 - Definite integrals Evaluate the following definite...Ch. 7.3 - Definite integrals Evaluate the following definite...Ch. 7.3 - Prob. 66ECh. 7.3 - Prob. 67ECh. 7.3 - Prob. 68ECh. 7.3 - Catenary arch The portion of the curve y=1716coshx...Ch. 7.3 - Length of a catenary Show that the arc length of...Ch. 7.3 - Power lines A power line is attached at the same...Ch. 7.3 - Sag angle Imagine a climber clipping onto the rope...Ch. 7.3 - Wavelength The velocity of a surface wave on the...Ch. 7.3 - Prob. 74ECh. 7.3 - Prob. 75ECh. 7.3 - Prob. 76ECh. 7.3 - Explain why or why not Determine whether the...Ch. 7.3 - Evaluating hyperbolic functions Use a calculator...Ch. 7.3 - Evaluating hyperbolic functions Evaluate each...Ch. 7.3 - Prob. 80ECh. 7.3 - Critical points Find the critical points of the...Ch. 7.3 - Critical points a. Show that the critical points...Ch. 7.3 - Points of inflection Find the x-coordinate of the...Ch. 7.3 - Prob. 84ECh. 7.3 - Area of region Find the area of the region bounded...Ch. 7.3 - Prob. 86ECh. 7.3 - LHpital loophole Explain why lHpitals Rule fails...Ch. 7.3 - Limits Use lHpitals Rule to evaluate the following...Ch. 7.3 - Limits Use lHpitals Rule to evaluate the following...Ch. 7.3 - Prob. 90ECh. 7.3 - Prob. 91ECh. 7.3 - Prob. 92ECh. 7.3 - Kiln design Find the volume interior to the...Ch. 7.3 - Prob. 94ECh. 7.3 - Falling body When an object falling from rest...Ch. 7.3 - Prob. 96ECh. 7.3 - Prob. 97ECh. 7.3 - Prob. 98ECh. 7.3 - Differential equations Hyperbolic functions are...Ch. 7.3 - Prob. 100ECh. 7.3 - Prob. 101ECh. 7.3 - Prob. 102ECh. 7.3 - Prob. 103ECh. 7.3 - Prob. 104ECh. 7.3 - Prob. 105ECh. 7.3 - Theorem 7.8 a. The definition of the inverse...Ch. 7.3 - Prob. 107ECh. 7.3 - Prob. 108ECh. 7.3 - Arc length Use the result of Exercise 108 to find...Ch. 7.3 - Prob. 110ECh. 7.3 - Prob. 111ECh. 7.3 - Definitions of hyperbolic sine and cosine Complete...Ch. 7 - Explain why or why not Determine whether the...Ch. 7 - Integrals Evaluate the following integrals. 56....Ch. 7 - Integrals Evaluate the following integrals. 57....Ch. 7 - Integrals Evaluate the following integrals. 58....Ch. 7 - Integrals Evaluate the following integrals. 59....Ch. 7 - Integrals Evaluate the following integrals. 60....Ch. 7 - Integrals Evaluate the following integrals. 61....Ch. 7 - Integrals Evaluate the following integrals. 62....Ch. 7 - Integrals Evaluate the following integrals. 63....Ch. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Prob. 14RECh. 7 - Prob. 15RECh. 7 - Derivatives Find the derivatives of the following...Ch. 7 - Prob. 17RECh. 7 - Prob. 18RECh. 7 - Prob. 19RECh. 7 - Population growth The population of a large city...Ch. 7 - Caffeine An adult consumes an espresso containing...Ch. 7 - Two cups of coffee A college student consumed two...Ch. 7 - Moores Law In 1965, Gordon Moore observed that the...Ch. 7 - Radioactive decay The mass of radioactive material...Ch. 7 - Population growth Growing from an initial...Ch. 7 - Prob. 26RECh. 7 - Prob. 27RECh. 7 - Curve sketching Use the graphing techniques of...Ch. 7 - Prob. 29RECh. 7 - Prob. 30RECh. 7 - Linear approximation Find the linear approximation...Ch. 7 - Limit Evaluate limx(tanhx)x.Ch. 7 - Derivatives of hyperbolic functions Compute the...Ch. 7 - Arc length Find the arc length of the curve y = ln...
Additional Math Textbook Solutions
Find more solutions based on key concepts
A categorical variable has three categories, with the following frequencies of occurrence: a. Compute the perce...
Basic Business Statistics, Student Value Edition
Evaluate the integrals in Exercises 1–14.
9.
University Calculus: Early Transcendentals (4th Edition)
Optimal garden A rectangular flower garden with an area of 30 m2 is surrounded by a grass border 1 m wide on tw...
Calculus: Early Transcendentals (2nd Edition)
Consider a group of 20 people. If everyone shakes hands with everyone else, how many handshakes take place?
A First Course in Probability (10th Edition)
In Exercises 11-20, express each decimal as a percent.
11. 0.59
Thinking Mathematically (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a 29 b 39 d Ꮎ 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you

Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY