EBK INTRODUCTION TO THE PRACTICE OF STA
EBK INTRODUCTION TO THE PRACTICE OF STA
8th Edition
ISBN: 9781319116828
Author: Moore
Publisher: VST
bartleby

Videos

Question
Book Icon
Chapter 7.2, Problem 97E

(a)

To determine

To find: The degrees of freedom using the formula as well as using software.

(a)

Expert Solution
Check Mark

Answer to Problem 97E

Solution: The degrees of freedom is 137.

Explanation of Solution

Given: Consider the provided data n1=115 and n2=220, for drill and blast workers, x¯1=18.0 and s1=7.8, also for outdoor concrete workers x¯2=6.5 and s2=3.4.

Calculation: The degrees of freedom for the two sample t test using pooled method can be calculated as:

df=(s12n1+s22n2)21n11(s12n1)2+1n21(s22n2)2=(7.82115+3.42220)211151(7.82115)2+12201(3.42220)2=137

The degrees of freedom using software can be obtained by using the below mentioned steps.

Step 1: Go to Stat > Basic Statistics > 2-Sample t.

Step 2: Choose the option of ‘Summarized data’ from the dropdown and put the data of sample size, sample mean and sample standard deviation of both the samples.

Step 3: Substitute the value of confidence level, test difference and alternative with 95.0, 0, and not equal respectively.

Step 4: Click OK twice.

The degrees of freedom is obtained as 137 in Minitab output.

Interpretation: The degrees of freedom is obtained as 137 by using the manual method and software.

(b)

To determine

To find: The pooled standard deviation and the comparison of the pooled standard deviation with the standard deviation of each group.

(b)

Expert Solution
Check Mark

Answer to Problem 97E

Solution: The poled standard deviation is 5.33 which is closer to the sample standard deviation o the second group.

Explanation of Solution

Given: Consider the provided data n1=115 and n2=220, for drill and blast workers, x¯1=18.0 and s1=7.8, also for outdoor concrete workers x¯2=6.5 and s2=3.4.

Calculation: The below steps are followed in Minitab software to calculate the pooled standard deviation.

Step 1: Go to Stat > Basic Statistics > 2-Sample t.

Step 2: Choose the option of ‘Summarized data’ from the dropdown and put the data of sample size, sample mean and sample standard deviation of both the samples. And select the option “Assume equal variances”.

Step 3: Substitute the value of confidence level, test difference and alternative with 95.0, 0, and not equal respectively.

Step 4: Click OK twice.

Interpretation: The pooled standard deviation is obtained as 5.33. The obtained pooled standard deviation is closer to the sample standard deviation of the second group when the large sample is taken.

(c)

To determine

To find: The standard error of the difference of means without assuming equal variances and with assuming equal variance and compare both values.

(c)

Expert Solution
Check Mark

Answer to Problem 97E

Solution: The standard error of the difference of means without assuming equal variances is 0.7626 whereas the standard error for the pooled case is 0.6133.

Explanation of Solution

Calculation: The standard error of the difference of the mean, when assumption of the equal variances is not made, can be calculated as:

SE1=s12n1+s22n2=7.82115+3.42220=0.7626

The standard error of the difference of the mean, when assumption of the equal variances is made, can be calculated as:

SE2=sp1n1+1n2=5.33×1115+1220=0.6133

Interpretation: The standard error for the cases where the assumption of the equal variances is not made and assumption of the equal variances is made are obtained as 0.7626 and 0.6133.

(d)

To determine

To test: The hypothesis test of difference in population mean and determine the value of confidence interval.

(d)

Expert Solution
Check Mark

Answer to Problem 97E

Solution: There is a sufficient evidence at α=0.05 to reject the null hypothesis and the confidence interval is obtained as (10.293,12.707).

Explanation of Solution

Given: According to the exercise 7.77, there is a significant difference in the mean exposure to dust between the two groups at 5% significance level. Consider the provided data n1=115 and n2=220, for drill and blast workers, x¯1=18.0 and s1=7.8, also for outdoor concrete workers x¯2=6.5 and s2=3.4.

Calculation: To test hypothesis for the difference of population means proceed as follows:

First of all, define the null and alternate hypotheses for a two-tailed test as:

H0:μ1=μ2Ha:μ1μ2

Here, the alternate hypothesis is two-sided as the provided problem does not provide any specific information regarding the group, which is more exposed to dust than the other one.

To obtain the value of the test statistic, Minitab is used. Below mentioned steps are followed to obtain the result.

Step 1: Go to Stat > Basic Statistics > 2-Sample t.

Step 2: Choose the option of ‘Summarized data’ from the dropdown and put the data of sample size, sample mean and sample standard deviation of both the samples. And select the option “Assume equal variances”.

Step 3: Substitute the value of confidence level, test difference and alternative with 95.0, 0, and not equal respectively.

Step 4: Click OK twice.

The value of the test statistic, degrees of freedom and the P-value is obtained as 18.74, 333 and 0.000 respectively. Moreover, the 95% confidence interval is obtained as (10.293,12.707).

Conclusion: There is adequate evidence to reject the null hypothesis because P-value of 0.000 is less than the level of significance, that is, α=0.05. Therefore, it can be concluded that μ1μ2, and it can be claimed there is a significant difference in the mean exposure to dust between the two groups. The result is same with the result obtained in the exercise 7.77.

(e)

To determine

To find: The degrees of freedom using the formula as well as using software, the pooled standard deviation and the comparison of the pooled standard deviation with the standard deviation of each group, the standard error of the difference of means without assuming equal variances and with assuming equal variance and compare both values, and the hypothesis test of difference in population mean and determine the value of confidence interval.

(e)

Expert Solution
Check Mark

Answer to Problem 97E

Solution: The degrees of freedom is 121.

The poled standard deviation is 1.734 which is closer to the sample standard deviation o the second group.

The standard error of the difference of means without assuming equal variances is 0.2653 whereas the standard error for the pooled case is 0.1995.

There is a sufficient evidence at α=0.05 to reject the null hypothesis and the confidence interval is obtained as (4.508,5.292).

Explanation of Solution

Given: According to the exercise 7.78, there is a significant difference in the mean exposure to dust between the two groups at 5% significance level. Consider the provided data n1=115 and n2=220, for drill and blast workers, x¯1=6.3 and s1=2.8, also for outdoor concrete workers x¯2=1.4 and s2=0.7.

Calculation: The degrees of freedom for the two sample t test using pooled method can be calculated as:

df=(s12n1+s22n2)21n11(s12n1)2+1n21(s22n2)2=(2.82115+0.72220)211151(2.82115)2+12201(0.72220)2=121.50

The degrees of freedom using software can be obtained by using the below mentioned steps.

Step 1: Go to Stat > Basic Statistics > 2-Sample t.

Step 2: Choose the option of ‘Summarized data’ from the dropdown and put the data of sample size, sample mean and sample standard deviation of both the samples.

Step 3: Substitute the value of confidence level, test difference and alternative with 95.0, 0, and not equal respectively.

Step 4: Click OK twice.

The degrees of freedom is obtained as 121 in Minitab output.

The below steps are followed in Minitab software to calculate the pooled standard deviation.

Step 1: Go to Stat > Basic Statistics > 2-Sample t.

Step 2: Choose the option of ‘Summarized data’ from the dropdown and put the data of sample size, sample mean and sample standard deviation of both the samples. And select the option “Assume equal variances”.

Step 3: Substitute the value of confidence level, test difference and alternative with 95.0, 0, and not equal respectively.

Step 4: Click OK twice.

The pooled standard deviation is obtained as 1.734.

The standard error of the difference of the mean, when assumption of the equal variances is not made, can be calculated as:

SE1=s12n1+s22n2=2.82115+0.72220=0.2653

The standard error of the difference of the mean, when assumption of the equal variances is made, can be calculated as:

SE2=sp1n1+1n2=1.734×1115+1220=0.1995

To test hypothesis for the difference of population means proceed as follows:

First of all, define the null and alternate hypotheses for a two-tailed test as:

H0:μ1=μ2Ha:μ1μ2

Here, the alternate hypothesis is two-sided as the provided problem does not provide any specific information regarding the group, which is more exposed to dust than the other one.

To obtain the value of the test statistic, Minitab is used. Below mentioned steps are followed to obtain the result.

Step 1: Go to Stat > Basic Statistics > 2-Sample t.

Step 2: Choose the option of ‘Summarized data’ from the dropdown and put the data of sample size, sample mean and sample standard deviation of both the samples. And select the option “Assume equal variances”.

Step 3: Substitute the value of confidence level, test difference and alternative with 95.0, 0, and not equal respectively.

Step 4: Click OK twice.

The value of the test statistic, degrees of freedom and the P-value is obtained as 24.56, 333 and 0.000 respectively. Moreover, the 95% confidence interval is obtained as (4.508,5.292).

Interpretation: The degrees of freedom is obtained as 121 by using the manual method and software. The pooled standard deviation is obtained as 1.734. The obtained pooled standard deviation is closer to the sample standard deviation of the first group when the large sample is taken. The standard error for the cases where the assumption of the equal variances is not made and assumption of the equal variances is made are obtained as 0.2653 and 0.1995.

There is adequate evidence to reject the null hypothesis because P-value of 0.000 is less than the level of significance, that is, α=0.05. Therefore, it can be concluded that μ1μ2, and it can be claimed there is a significant difference in the mean exposure to dust between the two groups. The result is same with the result obtained in the exercise 7.78.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Perform a Step by step  following tests in Microsoft Excel. Each of the following is 0.5 points, with a total of 6 points. Provide your answers in the following table. Median Standard Deviation Minimum Maximum Range 1st Quartile 2nd Quartile 3rd Quartile Skewness; provide a one sentence explanation of what does the skewness value indicates Kurtosis; provide a one sentence explanation of what does the kurtosis value indicates Make a labelled histogram; no point awarded if it is not labelled Make a labelled boxplot; no point awarded if it is not labelled   Data 27 30 22 25 24 22 20 28 20 26 21 23 24 20 28 30 20 28 29 30 21 26 29 25 26 25 20 30 26 28 25 21 22 27 27 24 26 22 29 28 30 22 22 22 30 21 21 30 26 20
Consider a sample with data values of 27, 25, 20, 15, 30, 34, 28, and 25. Compute the range, interquartile range, variance, and standard deviation (to a maximum of 2 decimals, if decimals are necessary). Range   Interquartile range   Variance   Standard deviation
Obtain the linear equation for trend for time series with St² = 140, Ey = 16.91 and Σty= 62.02, m n = 7

Chapter 7 Solutions

EBK INTRODUCTION TO THE PRACTICE OF STA

Ch. 7.1 - Prob. 11UYKCh. 7.1 - Prob. 12UYKCh. 7.1 - Prob. 13UYKCh. 7.1 - Prob. 14UYKCh. 7.1 - Prob. 15UYKCh. 7.1 - Prob. 16UYKCh. 7.1 - Prob. 17ECh. 7.1 - Prob. 18ECh. 7.1 - Prob. 19ECh. 7.1 - Prob. 20ECh. 7.1 - Prob. 21ECh. 7.1 - Prob. 22ECh. 7.1 - Prob. 23ECh. 7.1 - Prob. 24ECh. 7.1 - Prob. 25ECh. 7.1 - Prob. 26ECh. 7.1 - Prob. 27ECh. 7.1 - Prob. 28ECh. 7.1 - Prob. 29ECh. 7.1 - Prob. 30ECh. 7.1 - Prob. 31ECh. 7.1 - Prob. 32ECh. 7.1 - Prob. 33ECh. 7.1 - Prob. 34ECh. 7.1 - Prob. 35ECh. 7.1 - Prob. 36ECh. 7.1 - Prob. 37ECh. 7.1 - Prob. 38ECh. 7.1 - Prob. 39ECh. 7.1 - Prob. 40ECh. 7.1 - Prob. 41ECh. 7.1 - Prob. 42ECh. 7.1 - Prob. 43ECh. 7.1 - Prob. 44ECh. 7.1 - Prob. 45ECh. 7.1 - Prob. 46ECh. 7.1 - Prob. 47ECh. 7.1 - Prob. 48ECh. 7.1 - Prob. 49ECh. 7.1 - Prob. 50ECh. 7.1 - Prob. 51ECh. 7.1 - Prob. 52ECh. 7.1 - Prob. 53ECh. 7.1 - Prob. 54ECh. 7.1 - Prob. 55ECh. 7.2 - Prob. 56UYKCh. 7.2 - Prob. 57UYKCh. 7.2 - Prob. 59UYKCh. 7.2 - Prob. 60UYKCh. 7.2 - Prob. 61UYKCh. 7.2 - Prob. 62UYKCh. 7.2 - Prob. 63ECh. 7.2 - Prob. 64ECh. 7.2 - Prob. 65ECh. 7.2 - Prob. 66ECh. 7.2 - Prob. 67ECh. 7.2 - Prob. 68ECh. 7.2 - Prob. 69ECh. 7.2 - Prob. 70ECh. 7.2 - Prob. 71ECh. 7.2 - Prob. 74ECh. 7.2 - Prob. 73ECh. 7.2 - Prob. 58UYKCh. 7.2 - Prob. 75ECh. 7.2 - Prob. 76ECh. 7.2 - Prob. 79ECh. 7.2 - Prob. 80ECh. 7.2 - Prob. 81ECh. 7.2 - Prob. 82ECh. 7.2 - Prob. 83ECh. 7.2 - Prob. 84ECh. 7.2 - Prob. 85ECh. 7.2 - Prob. 86ECh. 7.2 - Prob. 87ECh. 7.2 - Prob. 88ECh. 7.2 - Prob. 89ECh. 7.2 - Prob. 90ECh. 7.2 - Prob. 92ECh. 7.2 - Prob. 93ECh. 7.2 - Prob. 94ECh. 7.2 - Prob. 95ECh. 7.2 - Prob. 96ECh. 7.2 - Prob. 98ECh. 7.2 - Prob. 78ECh. 7.2 - Prob. 72ECh. 7.2 - Prob. 77ECh. 7.2 - Prob. 91ECh. 7.2 - Prob. 97ECh. 7.3 - Prob. 99UYKCh. 7.3 - Prob. 100UYKCh. 7.3 - Prob. 101UYKCh. 7.3 - Prob. 102ECh. 7.3 - Prob. 103ECh. 7.3 - Prob. 104ECh. 7.3 - Prob. 105ECh. 7.3 - Prob. 106ECh. 7.3 - Prob. 107ECh. 7.3 - Prob. 108ECh. 7.3 - Prob. 109ECh. 7.3 - Prob. 110ECh. 7.3 - Prob. 111ECh. 7.3 - Prob. 112ECh. 7 - Prob. 113ECh. 7 - Prob. 114ECh. 7 - Prob. 115ECh. 7 - Prob. 117ECh. 7 - Prob. 119ECh. 7 - Prob. 120ECh. 7 - Prob. 121ECh. 7 - Prob. 122ECh. 7 - Prob. 123ECh. 7 - Prob. 124ECh. 7 - Prob. 125ECh. 7 - Prob. 126ECh. 7 - Prob. 127ECh. 7 - Prob. 130ECh. 7 - Prob. 129ECh. 7 - Prob. 118ECh. 7 - Prob. 131ECh. 7 - Prob. 132ECh. 7 - Prob. 134ECh. 7 - Prob. 135ECh. 7 - Prob. 136ECh. 7 - Prob. 137ECh. 7 - Prob. 138ECh. 7 - Prob. 139ECh. 7 - Prob. 144ECh. 7 - Prob. 143ECh. 7 - Prob. 116ECh. 7 - Prob. 128ECh. 7 - Prob. 133ECh. 7 - Prob. 140ECh. 7 - Prob. 141ECh. 7 - Prob. 142E
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Text book image
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Hypothesis Testing using Confidence Interval Approach; Author: BUM2413 Applied Statistics UMP;https://www.youtube.com/watch?v=Hq1l3e9pLyY;License: Standard YouTube License, CC-BY
Hypothesis Testing - Difference of Two Means - Student's -Distribution & Normal Distribution; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=UcZwyzwWU7o;License: Standard Youtube License