ELECTRICITY FOR TRADES
3rd Edition
ISBN: 9780078118630
Author: Petruzella
Publisher: RENT MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7.2, Problem 6RQ
An electric soldering iron with a 40-Ω heating element is plugged into a 120-V outlet. How much current will be drawn by the iron?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Don't use ai to answer I will report you answer
Discuss the importance of power-factor correction in
a.c. systems.
A 400 V, 50 Hz, three-phase distribution system
supplies a 20 kVA, three-phase induction motor load
at a power factor of 0.8 lagging, and a star-connected
set of impedances, each having a resistance of 10 Ω
and an inductive reactance of 8 Ω. Calculate the
capacitance of delta-connected capacitors required to
improve the overall power factor to 0.95 lagging.
ANS: 75 µF/ph
A 3-phase, wye-connected generator induces 2400 V in each of its windings. Calculate the line voltage.
Chapter 7 Solutions
ELECTRICITY FOR TRADES
Ch. 7.1 - What is the base unit and symbol used for...Ch. 7.1 - Write the metric prefix and symbol used to...Ch. 7.1 - Convert each of the following: a. 2,500 to...Ch. 7.2 - State Ohms law.Ch. 7.2 - List the three formulas associated with Ohms law.Ch. 7.2 - Calculate the unknown value for each circuit (a)...Ch. 7.2 - A pilot lamp with 12 volts applied to it draws a...Ch. 7.2 - A resistor has a resistance of 220 . The current...Ch. 7.2 - An electric soldering iron with a 40- heating...Ch. 7.2 - A baseboard heater draws a current of 8 A when...
Ch. 7.2 - A sensor module has an internal resistance of...Ch. 7.2 - The current through and the voltage drop across a...Ch. 7.2 - The heating element for an electric floor heating...Ch. 7.2 - How much power is lost in the form of heat when 25...Ch. 7.2 - The voltage drop across a 330- resistor is...Ch. 7.2 - A digital multimeter display indicates a reading...Ch. 7.2 - Calculate the unknown value for each circuit (a)...Ch. 7.2 - Assume that applying 120 volts to a resistive load...Ch. 7.2 - The voltage drop across a 10-W, 330- resistor is...Ch. 7.2 - The cold resistance of a tungsten lamp filament is...Ch. 7.2 - An electric baseboard heater is rated for 1200 W...Ch. 7.2 - A lamp dimmer switch is rated for 5 A at 120 V....Ch. 7.2 - A 400-W 4- public address speaker is to be fused...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- why Low Pass filter (LPF) R₁C=S V₁ R т Tc Voarrow_forwardDon't use ai to answer I will report you answerarrow_forwardA 60hp,3-phase motor absorbs 50 kW from a 600 V,3-phase line. If the line current is 60 A, calculate the following: a. The efficiency of the motor b. The apparent power absorbed by the motor c. The reactive power absorbed by the motor and the power factor of the motorarrow_forward
- Three 15Ω resistors and three 8Ω reactors are connected as shown in Fig. 18. If the line voltage is 530 V, calculate the following: a. The active, reactive, and apparent power supplied to the 3 -phase load b. The voltage across each resistorarrow_forwardThree resistors are connected in delta. If the line voltage is 13.2kV and the line current is 1202 A, calculate the following: A) the current in and the voltage acroos each resistor B) The power supplied to each resistor and the 3 phase load C) The ohmic value of each resistorarrow_forwardWith the aid of a phasor diagram show that the active power and power factor of a balanced three-phase load can be measured by two wattmeters. For a certain load, one wattmeter indicated 20 kW and the other 5 kW after the voltage circuit of this wattmeter had been reversed. Calculate the active power and the power factor of the load. ANS: 15 kW, 0.327arrow_forward
- State the advantages to be gained by raising the power factor of industrial loads. A 400 V, 50 Hz, three-phase motor takes a line current of 15.0 A when operating at a lagging power factor of 0.65. When a capacitor bank is connected across the motor terminals, the line current is reduced to 11.5 A. Calculate the rating (in kVA) and the capa citance per phase of the capacitor bank for: (a) star connection; (b) delta connection. Find also the new overall power factor. ANS: 3.81 kvar, 70.5 µF, 23.5 µF, 0.848 laggingarrow_forwardA single wattmeter is used to measure the total active power taken by a 400 V, three-phase induction motor. When the output power of the motor is 15 kW, the efficiency is 88 per cent and the power factor is 0.84 lagging. The current coil of the wattmeter is connected in the yellow line. With the aid of a phasor diagram, calculate the wattmeter indication when the voltage circuit is connected between the yellow line and (a) the red line, (b) the blue line. Show that the sum of the two wattmeter indications gives the total active power taken by the motor. Assume the phase sequence to be R–Y–B. ANS: 11.7 kW, 5.33 kWarrow_forwardPlease help mearrow_forward
- Don't use ai to answer I will report you answer.arrow_forwardIf Req = 60 Ω in the circuit shown, If a voltage source of 10V is connected to the terminals in the given circuit, determine the current and voltage foreach resistor.arrow_forwardIf Req = 60 Ω in the circuit shown, (a) solve for the value of R. (b) If a voltage source of 10V is connected to the terminals in the given circuit, determine the current and voltage foreach resistor. Please show the complete solution.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Types of House Wiring - Types of Electrical Wiring - Electrical Wiring; Author: Learning Engineering;https://www.youtube.com/watch?v=A5P-buWX-dA;License: Standard Youtube License