![Organic Chemistry, Books a la Carte Edition (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780134074580/9780134074580_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the
functional group which is used as main suffix. - Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the
alkane is replaced by ‘yne’ ending, the name of alkyne is obtained. - Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of
alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain. - When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(b)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(c)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(d)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(e)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(f)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 7 Solutions
Organic Chemistry, Books a la Carte Edition (8th Edition)
- Experiment: Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.arrow_forwardRel. Intensity Q 1. Which one of the following is true of the compound whose mass spectrum is shown here? Explain how you decided. 100 a) It contains chlorine. b) It contains bromine. c) It contains neither chlorine nor bromine. 80- 60- 40- 20- 0.0 0.0 TT 40 80 120 160 m/z 2. Using the Table of IR Absorptions how could you distinguish between these two compounds in the IR? What absorbance would one compound have that the other compound does not? HO CIarrow_forwardIllustrate reaction mechanisms of alkenes with water in the presence of H2SO4, detailing each step of the process. Please show steps of processing. Please do both, I will thumb up for sure #1 #3arrow_forward
- The decomposition of dinitrogen pentoxide according to the equation: 50°C 2 N2O5(g) 4 NO2(g) + O2(g) follows first-order kinetics with a rate constant of 0.0065 s-1. If the initial concentration of N2O5 is 0.275 M, determine: the final concentration of N2O5 after 180 seconds. ...arrow_forwardDon't used hand raitingarrow_forwardCS2(g) →CS(g) + S(g) The rate law is Rate = k[CS2] where k = 1.6 × 10−6 s−¹. S What is the concentration of CS2 after 5 hours if the initial concentration is 0.25 M?arrow_forward
- CS2(g) → CS(g) + S(g) The rate law is Rate = k [CS2] where k = 1.6 × 10-6 s−1. S Calculate the half-life.arrow_forwardThe following is a first order reaction where the rate constant, k, is 6.29 x 10-3 min-*** What is the half-life? C2H4 C2H2 + H2arrow_forwardControl Chart Drawing Assignment The table below provides the number of alignment errors observed during the final inspection of a certain model of airplane. Calculate the central, upper, and lower control limits for the c-chart and draw the chart precisely on the graph sheet provided (based on 3-sigma limits). Your chart should include a line for each of the control limits (UCL, CL, and LCL) and the points for each observation. Number the x-axis 1 through 25 and evenly space the numbering for the y-axis. Connect the points by drawing a line as well. Label each line drawn. Airplane Number Number of alignment errors 201 7 202 6 203 6 204 7 205 4 206 7 207 8 208 12 209 9 210 9 211 8 212 5 213 5 214 9 215 8 216 15 217 6 218 4 219 13 220 7 221 8 222 15 223 6 224 6 225 10arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)