DISCRETE MATHEMATICS+ITS APPL. (LL)-W/A
8th Edition
ISBN: 9781260521337
Author: ROSEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7.2, Problem 17E
17,It £ and F are independent events, prove or disprove that j andFarenecessarily ind ependent events.
In Exerases 18,20, and 21 assume that the year has 366 hays and all birthdays are equally likely. In Exercise 15 assnmeit is equally likely that a person is born In any given month ofthe year,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I dont understand how the trigonometry works with complex number explain the basics of it
Inverse laplace transform
Lect: Huda I
H.w
1- F(S)=
A- Find - F(s) of the following
S
(s+1)5
1
2- F(s)
s² (s-a)
5+5
3- F(s)=
s2+4s+3
1
4- F(s)=
(s+2)2(s-2)
3s2-7s+5
5- F(s)=
(s-1)(s2-5s+6)
Inverse laplace transform
Lect :Huda I
H.w
A- Find L-1 F(s) of the following
1- F(S)=
2- F(s)-
S
(+1)5
s² (s-a)
5+5
s2+4s+3
3- F(s)-
1
4- F(s)-
(s+2)2(s-2)
3s2-7s+5
5- F(s)-
(s-1)(s2-55+6)
B-Solve the D.E of the following:
1- y'+3y+2fy dt = f(t) for y(0)-1 if f(t) is the function
whose graph is shown below
2
1 2
2-y+4y-u(t)
for y(0)=y'(0)=0
3- y"+4y'+13y= e−2t sin3t
for y(0)-1 and y'(0)=-2
17
Chapter 7 Solutions
DISCRETE MATHEMATICS+ITS APPL. (LL)-W/A
Ch. 7.1 - i. What is the probability that a card selected at...Ch. 7.1 - t istheprobability that a fair die comes up six...Ch. 7.1 - t is the probability that a randomly selected...Ch. 7.1 - What is the probability7that a randomly selected...Ch. 7.1 - t is the probability that the sum of the numbers...Ch. 7.1 - t is the probability that a card selected at...Ch. 7.1 - t is the probability that when a coin is flipped...Ch. 7.1 - t is the probability that a five-card poker hand...Ch. 7.1 - t is the probability that a five-card poker hand...Ch. 7.1 - t is the probability that a five-card poker hand...
Ch. 7.1 - Prob. 11ECh. 7.1 - t is the probability that afive-card poker hand...Ch. 7.1 - t is the probability tliat afive-card poker hand...Ch. 7.1 - t istheprobability that a five-card poker hand...Ch. 7.1 - t is theprobabilifrthatafive-cardpoker hand...Ch. 7.1 - t is the probability7that a five-card poker hand...Ch. 7.1 - Prob. 17ECh. 7.1 - Mat is the probability' that a five-card poker...Ch. 7.1 - Prob. 19ECh. 7.1 - probabihh’thatafiM^Ch. 7.1 - Prob. 21ECh. 7.1 - t is the probability that a positive integer not...Ch. 7.1 - t is the probability that a positive integer not...Ch. 7.1 - Prob. 24ECh. 7.1 - - Find the probability of winning a lottery by...Ch. 7.1 - 26.Find the pr obabilitj- of selecting none of the...Ch. 7.1 - Prob. 27ECh. 7.1 - Prob. 28ECh. 7.1 - Prob. 29ECh. 7.1 - Prob. 30ECh. 7.1 - Prob. 31ECh. 7.1 - Prob. 32ECh. 7.1 - i$theprobabilitytiiatAbby,Barry,andSy^...Ch. 7.1 - 34.Mat is the probability' that Bo, Colleen, Jeff,...Ch. 7.1 - roulette, a wheel with 38 numbers is spun. Of...Ch. 7.1 - ch is more likely: rolling a total of 8 when two...Ch. 7.1 - ch is more likely: rolling a total of 9 when hvo...Ch. 7.1 - A player in the Mega Millions lottery picks five...Ch. 7.1 - a player buys a Mega Millions ticket in many...Ch. 7.1 - A player in the Powerball lottery picks five...Ch. 7.1 - Aplayer in the Powerball lottery (see Exercise 40)...Ch. 7.1 - Two events E i and E2are calledindependentifp(Etfl...Ch. 7.1 - Prob. 43ECh. 7.1 - Suppose that instead of three doors, there are...Ch. 7.1 - s problem was posed by the Chevalier de Mere and...Ch. 7.2 - Prob. 1ECh. 7.2 - Prob. 2ECh. 7.2 - Prob. 3ECh. 7.2 - w that conditions (2) and (22) are met under...Ch. 7.2 - A pair of dice is loaded. The probability that a 4...Ch. 7.2 - t is the probability of these events when we...Ch. 7.2 - t is the probability of these events when we...Ch. 7.2 - 8.What is the probability of these events when we...Ch. 7.2 - t is the probability of these events when we...Ch. 7.2 - What is the probability of these events when we...Ch. 7.2 - pose, that £ and F are. events such that d(£)=0.7...Ch. 7.2 - pose that £ and Fare events such thatp(£) = 0.8...Ch. 7.2 - w that if £ and F are events, thenpfEn F) >p(E) +...Ch. 7.2 - Use mathematical induction to prove the following...Ch. 7.2 - w that if £x, £2,Enare events from afinite sample...Ch. 7.2 - Show that iff and f are independent events,...Ch. 7.2 - 17,It £ and F are independent events, prove or...Ch. 7.2 - What is the probability that hvo people chosen at...Ch. 7.2 - Mat is the probability that two people chosen at...Ch. 7.2 - Prob. 20ECh. 7.2 - Prob. 21ECh. 7.2 - February 29 occurs only inleap years, Years...Ch. 7.2 - ^Tiat is the conditional probabilitv that exactly...Ch. 7.2 - What is the. conditional probabilih' that exactly...Ch. 7.2 - Prob. 25ECh. 7.2 - Let Ebe the event that aranmly generated bit...Ch. 7.2 - Prob. 27ECh. 7.2 - a8. Assume that the probability a child is a boy...Ch. 7.2 - A group of six people play the game of “ odd...Ch. 7.2 - Find the probability that a randomly generated bit...Ch. 7.2 - Find the probability that a family with five...Ch. 7.2 - Prob. 32ECh. 7.2 - Prob. 33ECh. 7.2 - Find each of the following probabilities...Ch. 7.2 - d each of the following probabilities...Ch. 7.2 - Prob. 36ECh. 7.2 - Prob. 37ECh. 7.2 - 38.A pair of dice is rolled in a remote location...Ch. 7.2 - This exercise employs the probabilistic method to...Ch. 7.2 - Dense a Monte Carlo algorithm that determines...Ch. 7.2 - pseudocode to write out the probabilistic...Ch. 7.3 - i.Suppose that £ andFare events in a sample space...Ch. 7.3 - Suppose that Land Fare events in a sample space...Ch. 7.3 - 3.Suppose that Frida selects a ball by first...Ch. 7.3 - 4.Suppo s e that Ann selects a ball by first...Ch. 7.3 - Prob. 5ECh. 7.3 - Prob. 6ECh. 7.3 - Prob. 7ECh. 7.3 - 8,Suppose that one person in 10,000 people has a...Ch. 7.3 - Suppose that 8% of the patients tested in a clinic...Ch. 7.3 - io,Suppose that 4% of the patients tested in a...Ch. 7.3 - ...Ch. 7.3 - ...Ch. 7.3 - Prob. 13ECh. 7.3 - Prob. 14ECh. 7.3 - In this exercise we will use Bayes' theorem to...Ch. 7.3 - Prob. 16ECh. 7.3 - Prob. 17ECh. 7.3 - 18.Suppose that a Bayesian spam filter is trained...Ch. 7.3 - 19,Suppose that a Bayesian spam filter is trained...Ch. 7.3 - Prob. 20ECh. 7.3 - ,Suppose that a Bayesian spam filter is trained on...Ch. 7.3 - Suppose that we have prior information concerning...Ch. 7.3 - Prob. 23ECh. 7.4 - t is the expected number of heads that come up...Ch. 7.4 - t is the expected number of heads that come up...Ch. 7.4 - t is the expected number of times a 6 appears when...Ch. 7.4 - A coin is biased so that the probability a head...Ch. 7.4 - ^Tiat is the expected sum of the numbers that...Ch. 7.4 - Prob. 6ECh. 7.4 - final exam of a discrete mathematics course...Ch. 7.4 - t is the expected sum of the numbers that appear...Ch. 7.4 - Prob. 9ECh. 7.4 - Suppose that we flip a fair coin until either it...Ch. 7.4 - Suppose that we roll a fair die until a 6 conies...Ch. 7.4 - pose that we roll a fair die until a 6 comes up....Ch. 7.4 - pose thatwerollapairoffair dice...Ch. 7.4 - Show that the sum of the probabilities of a random...Ch. 7.4 - Show that if the random variable A'has the...Ch. 7.4 - Prob. 16ECh. 7.4 - Prob. 17ECh. 7.4 - Prob. 18ECh. 7.4 - Prob. 19ECh. 7.4 - Show that if J2,...,Xnare mutually independent...Ch. 7.4 - What is the expected value of the sum of the...Ch. 7.4 - as.Provethelaw of total expectations.Ch. 7.4 - Prob. 23ECh. 7.4 - Prob. 24ECh. 7.4 - A run is a maximal sequence of successes in a...Ch. 7.4 - a6.Let J(s) be a random variable, where I(s) is a...Ch. 7.4 - What is the variance of the number of heads that...Ch. 7.4 - t is the variance ot the number of times a 6...Ch. 7.4 - LetXnbe the random variable that equals the number...Ch. 7.4 - w that ifXand Fare independent random variables,...Ch. 7.4 - Prob. 31ECh. 7.4 - Pronde an example that shows that the variance of...Ch. 7.4 - pose that A\ andX2are independent Bernoulli trials...Ch. 7.4 - Prove the general caseofTheoremy. That is, show...Ch. 7.4 - Prob. 35ECh. 7.4 - Prob. 36ECh. 7.4 - Prob. 37ECh. 7.4 - pose that the number of cans of soda pop filled in...Ch. 7.4 - 39.Suppose that the number of aluminum cans...Ch. 7.4 - pose the probabilitvthatxis the...Ch. 7.4 - In this exercise we derive an estimate of the...Ch. 7.4 - Prob. 42ECh. 7.4 - to is the variance of the number of fixed...Ch. 7.4 - Prob. 44ECh. 7.4 - Prob. 45ECh. 7.4 - Prob. 46ECh. 7.4 - Prob. 47ECh. 7.4 - Prob. 48ECh. 7.4 - Prob. 49ECh. 7 - Define the probability of an event when all...Ch. 7 - WTiat conditions should be met by the...Ch. 7 - Define, the conditional probability’ of an event £...Ch. 7 - Prob. 4RQCh. 7 - tois a random variable? toare the possible values...Ch. 7 - Prob. 6RQCh. 7 - Explain how the average-case computational...Ch. 7 - Prob. 8RQCh. 7 - What does the linearity of expectations of random...Ch. 7 - Prob. 10RQCh. 7 - Prob. 11RQCh. 7 - Prob. 12RQCh. 7 - Prob. 13RQCh. 7 - What is the variance of the sum of n independent...Ch. 7 - Prob. 15RQCh. 7 - Prob. 1SECh. 7 - 2012, a player in the Mega Millions lottery picks...Ch. 7 - 2012, a player in the Powerball lottery picks five...Ch. 7 - t is the probability that a hand of 13 cards...Ch. 7 - t is the probability that a 13-card bridge hand...Ch. 7 - t is the probability that a seven-card poker hand...Ch. 7 - What is the expected value of the number that...Ch. 7 - What is the expected value of the number that...Ch. 7 - Suppose that a pair of fair octahedral dice is...Ch. 7 - io.Suppose that a pair offaiir dodecahedral diceis...Ch. 7 - ii.Supp o s e that a fair standard (cubic) die and...Ch. 7 - Prob. 12SECh. 7 - (mpeople!n>3!play“oddp™ut’todeadeMo^...Ch. 7 - Prob. 14SECh. 7 - posethatmandnarepositiYeintegers.Bat is...Ch. 7 - pose thatEt, E2,Enarenevents with p(£j) >o fori...Ch. 7 - Prob. 17SECh. 7 - t is the probability that when a fair coin is...Ch. 7 - t is the probability that a randomly selected bit...Ch. 7 - t is the probability that a randomly selected bit...Ch. 7 - sider the following game. A per son flips a coin...Ch. 7 - pose that n halls are tossed intobbins so that...Ch. 7 - posethatAandBareeventswthprobabilitiesp(A) =...Ch. 7 - posethat/l andB are events...Ch. 7 - all fromDefinition jinSection 7,2that the events...Ch. 7 - ...Ch. 7 - Prob. 27SECh. 7 - Prob. 28SECh. 7 - Prob. 29SECh. 7 - Prob. 30SECh. 7 - Prob. 31SECh. 7 - Prob. 32SECh. 7 - Prob. 33SECh. 7 - maximum satisfiability problemasks for an...Ch. 7 - Prob. 35SECh. 7 - The following method can be used to generate a...Ch. 7 - Prob. 1CPCh. 7 - Prob. 2CPCh. 7 - Prob. 3CPCh. 7 - Prob. 4CPCh. 7 - Prob. 5CPCh. 7 - ...Ch. 7 - Prob. 7CPCh. 7 - Prob. 8CPCh. 7 - Prob. 9CPCh. 7 - ulaterepeated trials oftheMoufr Hall Three-Door...Ch. 7 - Prob. 11CPCh. 7 - Prob. 1CAECh. 7 - Prob. 2CAECh. 7 - Prob. 3CAECh. 7 - Prob. 4CAECh. 7 - Prob. 5CAECh. 7 - Prob. 6CAECh. 7 - Prob. 7CAECh. 7 - Prob. 8CAECh. 7 - cribe the origins of probability theory and the...Ch. 7 - Prob. 2WPCh. 7 - 3.Discuss the probability' of winning when you...Ch. 7 - estigate the game of craps and discuss the...Ch. 7 - Prob. 5WPCh. 7 - Prob. 6WPCh. 7 - lain how Erdos and Renvi first used the...Ch. 7 - cuss the different types of probabilistic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 55 5.5 A glass bottle manufacturing company has recorded data on the average number of defects per 10,000 bottles due to stones (small pieces of rock embedded in the bottle wall) and the number of weeks since the last furnace overhaul. The data are shown below. Defects per 10,000 Weeks 13.0 4 16.1 5 14.5 6 17.8 7 22.0 8 27.4 9 16.8 10 65.6 ☐☐ Defects per 10,000 Weeks 34.2 11 12 49.2 13 66.2 81.2 87.4 14 15 16 114.5 17 a. Fit a straight-line regression model to the data and perform the standard tests for model adequacy. b. Suggest an appropriate transformation to eliminate the problems encoun- tered in part a. Fit the transformed model and check for adequacy.arrow_forwardAn article describes an experiment in which several types of boxes were compared with respect to compression strength (lb). The table below presents the results of a single-factor ANOVA experiment involving I = 4 types of boxes. Type of Box Compression Strength (lb) Sample Mean Sample SD 1 655.5 788.3 734.3 721.4 679.1 699.4 713.00 46.55 2 3 789.2 772.5 786.9 686.1 732.1 774.8 737.1 639.0 696.3 671.7 717.2 727.1 756.93 40.34 4 535.1 628.7 542.4 559.0 586.9 520.0 698.07 562.02 37.20 39.87 ЛUSE SALT Suppose that the compression strength observations on the fourth type of box had been 648.1, 741.7, 655.4, 672.0, 699.9, and 633.0 (obtained by adding 113 to each previous X4;). Assuming no change in the remaining observations, carry out an F test with α = 0.05. State the appropriate hypotheses. O Ho M₁ =μ₂ = μ3 = μ4 Ha at least two μ's are unequal Ho: M₁ = μ2 #M3 #μ4 H₂: all four μ's are equal O Ho M₁ = M2 = μ3 = μ4 Ha all four μ's are unequal # = O Ho: M1 M2 M3 & M4 Ha at least two μ's are…arrow_forwardFind the domain of each function. f(x) = tan 2x - πT 6arrow_forward
- One estimate of the proportion of children with autism in the United States is 1 in 100 (Source: http://www.cbsnews.com/stories/2009/10/05/health/main5363192.shtml). Suppose you are interested in the rate of autism among current school-aged children in Utah. You collect a sample of 400 children between the ages of 5 and 18 and find that three have had a previous diagnosis of an autism disorder. You plan to calculate a 95% confidence interval estimator of the proportion of school-aged children in Utah who have ever had a diagnosis of an autism disorder. Which of the following is the most likely reason you would use a Wilson estimator to calculate the confidence interval estimator? It is uncomfortable to define having been diagnosed with autism as a success. It is possible that if even the actual proportion in Utah is 1%, your sample may only have very few children who have had a previous diagnosis of an autism disorder. It is an easier way to calculate the confidence…arrow_forwardIn an experiment to compare the tensile strengths of I = 6 different types of copper wire, J = 5 samples of each type were used. The between-samples and within-samples estimates of σ² were computed as MSTr = 2623.3 and MSE = 1193.2, respectively. Use the F test at level 0.05 to test Ho: μ₁ = M2 μ6 versus Ha: at least two μ's are unequal. = ...= You can use the Distribution Calculators page in SALT to find critical values and/or p-values to answer parts of this question. Calculate the test statistic. (Round your answer to two decimal places.) f = What can be said about the P-value for the test? P-value>0.100 0.050 P-value < 0.100 0.010 P-value < 0.050 0.001 P-value < 0.010 P-value <0.001 State the conclusion in the problem context. Reject Ho. The data indicates there is not a difference in the mean tensile strengths. Fail to reject Ho. The data indicates a difference in the mean tensile strengths. Reject Ho. The data indicates a difference in the mean tensile strengths. Fail to reject…arrow_forwardshow step by step answerarrow_forward
- Write the given third order linear equation as an equivalent system of first order equations with initial values. Use Y1 = Y, Y2 = y', and y3 = y". - - √ (3t¹ + 3 − t³)y" — y" + (3t² + 3)y' + (3t — 3t¹) y = 1 − 3t² \y(3) = 1, y′(3) = −2, y″(3) = −3 (8) - (888) - with initial values Y = If you don't get this in 3 tries, you can get a hint.arrow_forwardThe system of first order differential equations y₁ = -4y1 - 1y2 y2 = 1y1 - 2y2 where y1(0) = −8, y2(0) = 6 has solution yı(t) = Y2(t) =arrow_forwardQuestion 2 1 pts Let A be the value of the triple integral SSS. (x³ y² z) dV where D is the region D bounded by the planes 3z + 5y = 15, 4z — 5y = 20, x = 0, x = 1, and z = 0. Then the value of sin(3A) is -0.003 0.496 -0.408 -0.420 0.384 -0.162 0.367 0.364arrow_forward
- Question 1 Let A be the value of the triple integral SSS₂ (x + 22) = 1 pts dV where D is the region in 0, y = 2, y = 2x, z = 0, and the first octant bounded by the planes x z = 1 + 2x + y. Then the value of cos(A/4) is -0.411 0.709 0.067 -0.841 0.578 -0.913 -0.908 -0.120arrow_forwardProblem 2-6. Need help on why its 1.22arrow_forwardScenario: As a data analyst for a retail company, you are tasked with examining the relationship between televisions screen size, and prices. Your analysis will involve both correlation and regression methods to quantify and interpret this relationship Make a Scatterplot of screen size vs. price. Explain in one sentence, does there appear to be a positive or a negative correlation between price and screen size? Paste a snapshot of the plot here. Please do not copy paste. Question 1: What is the value of correlation coefficient between screen size and price? Discuss the direction of the relationship (positive, negative, or zero relationship). Also discuss the strength of the relationship Estimate the relationship between screen size and price using a simple linear regression model and interpret the estimated coefficients. In your interpretation, tell the dollar amount by which price will change for each unit of increase in screen size. (The answer for the second part of this…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Bayes' Theorem 1: Introduction and conditional probability; Author: Dr Nic's Maths and Stats;https://www.youtube.com/watch?v=lQVkXfJ-rpU;License: Standard YouTube License, CC-BY
What is Conditional Probability | Bayes Theorem | Conditional Probability Examples & Problems; Author: ACADGILD;https://www.youtube.com/watch?v=MxOny_1y2Q4;License: Standard YouTube License, CC-BY
Bayes' Theorem of Probability With Tree Diagrams & Venn Diagrams; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=OByl4RJxnKA;License: Standard YouTube License, CC-BY
Bayes' Theorem - The Simplest Case; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XQoLVl31ZfQ;License: Standard Youtube License