The space heating of a facility is accomplished by natural gas heaters that are 85 percent efficient. The compressed-air needs of the facility are met by a large liquid-cooled compressor. The coolant of the compressor is cooled by air in a liquid-to-air heat exchanger whose airflow section is 1.0 m high and 1.0 m wide. During typical operation, the air is heated from 20 to 52°C as it flows through the heat exchanger. The average velocity of air on the inlet side is measured at 3 m/s. The compressor operates 20 hours a day and 5 days a week throughout the year. Taking the heating season to be 6 months (26 weeks) and the cost of the natural gas to be $1.25/therm (1 therm = 100,000 Btu = 105,500 kJ), determine how much money will be saved by diverting the compressor waste heat into the facility during the heating season.
The space heating of a facility is accomplished by natural gas heaters that are 85 percent efficient. The compressed-air needs of the facility are met by a large liquid-cooled compressor. The coolant of the compressor is cooled by air in a liquid-to-air heat exchanger whose airflow section is 1.0 m high and 1.0 m wide. During typical operation, the air is heated from 20 to 52°C as it flows through the heat exchanger. The average velocity of air on the inlet side is measured at 3 m/s. The compressor operates 20 hours a day and 5 days a week throughout the year. Taking the heating season to be 6 months (26 weeks) and the cost of the natural gas to be $1.25/therm (1 therm = 100,000 Btu = 105,500 kJ), determine how much money will be saved by diverting the compressor waste heat into the facility during the heating season.
Solution Summary: The author analyzes the amount of money saved by diverting the compressor waste heat into the facility during the heating season.
The space heating of a facility is accomplished by natural gas heaters that are 85 percent efficient. The compressed-air needs of the facility are met by a large liquid-cooled compressor. The coolant of the compressor is cooled by air in a liquid-to-air heat exchanger whose airflow section is 1.0 m high and 1.0 m wide. During typical operation, the air is heated from 20 to 52°C as it flows through the heat exchanger. The average velocity of air on the inlet side is measured at 3 m/s. The compressor operates 20 hours a day and 5 days a week throughout the year. Taking the heating season to be 6 months (26 weeks) and the cost of the natural gas to be $1.25/therm (1 therm = 100,000 Btu = 105,500 kJ), determine how much money will be saved by diverting the compressor waste heat into the facility during the heating season.
1) In each of the following scenarios, based on the plane of impact (shown with an (n, t)) and the
motion of mass 1, draw the direction of motion of mass 2 after the impact. Note that in all
scenarios, mass 2 is initially at rest. What can you say about the nature of the motion of mass 2
regardless of the scenario?
m1
15
<+
m2
2)
y
"L
χ
m1
m2
m1
בז
m2
F
8. In the following check to see if the set S is a vector subspace of the corresponding Rn. If
it is not, explain why not. If it is, then find a basis and the dimension.
X1
(a) S
=
X2
{[2], n ≤ n } c
X1 X2
CR²
X1
(b) S
X2
=
X3
X4
x1 + x2 x3 = 0
2) Suppose that two unequal masses m₁ and m₂ are moving with initial velocities V₁ and V₂,
respectively. The masses hit each other and have a coefficient of restitution e. After the impact,
mass 1 and 2 head to their respective gaps at angles a and ẞ, respectively. Derive expressions
for each of the angles in terms of the initial velocities and the coefficient of restitution.
m1
m2
8
m1
↑
บา
m2
ñ
В
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.