The compressed-air requirements of a plant are met by a 150-hp compressor equipped with an intercooler, an aftercooler, and a refrigerated dryer. The plant operates 6300 h/yr, but the compressor is estimated to be compressing air during only one-third of the operating hours, that is, 2100 hours a year. The compressor is either idling or is shut off the rest of the time. Temperature measurements and calculations indicate that 25 percent of the energy input to the compressor is removed from the compressed air as heat in the aftercooler. The COP of the refrigeration unit is 2.5, and the cost of electricity is $0.065/kWh. Determine the amount of energy and money saved per year as a result of cooling the compressed air before it enters the refrigerated dryer.
The compressed-air requirements of a plant are met by a 150-hp compressor equipped with an intercooler, an aftercooler, and a refrigerated dryer. The plant operates 6300 h/yr, but the compressor is estimated to be compressing air during only one-third of the operating hours, that is, 2100 hours a year. The compressor is either idling or is shut off the rest of the time. Temperature measurements and calculations indicate that 25 percent of the energy input to the compressor is removed from the compressed air as heat in the aftercooler. The COP of the refrigeration unit is 2.5, and the cost of electricity is $0.065/kWh. Determine the amount of energy and money saved per year as a result of cooling the compressed air before it enters the refrigerated dryer.
Solution Summary: The author analyzes the amount of energy and money saved per year by cooling the compressed air before it enters into refrigerated dryer.
The compressed-air requirements of a plant are met by a 150-hp compressor equipped with an intercooler, an aftercooler, and a refrigerated dryer. The plant operates 6300 h/yr, but the compressor is estimated to be compressing air during only one-third of the operating hours, that is, 2100 hours a year. The compressor is either idling or is shut off the rest of the time. Temperature measurements and calculations indicate that 25 percent of the energy input to the compressor is removed from the compressed air as heat in the aftercooler. The COP of the refrigeration unit is 2.5, and the cost of electricity is $0.065/kWh. Determine the amount of energy and money saved per year as a result of cooling the compressed air before it enters the refrigerated dryer.
The lower jaw AB [Purple 1] and the upper jaw-handle AD
[Yellow 2] exert vertical clamping forces on the object at R.
The hand squeezes the upper jaw-handle AD [2] and the
lower handle BC [Orane 4] with forces F. (Member CD [Red 3]
acts as if it is pinned at D, but, in a real vise-grips, its
position is actually adjustable.) The clamping force, R,
depends on the geometry and on the squeezing force F
applied to the handles. Determine the proportionality
between the clamping force, R, and the squeezing force F for
the dimensions given.
d3
d4
R
1
B
d1
2
d2
D...
d5
F
4
F
Values for dimensions on the figure are given in the following
table. Note the figure may not be to scale.
Variable
Value
d1
65 mm
d2
156 mm
d3
50 mm
45
d4
d5
113 mm
30 mm
R =
F
A triangular distributed load of max intensity w =460 N/m
acts on beam AB. The beam is supported by a pin at A and
member CD, which is connected by pins at C and D
respectively. Determine the reaction forces at A and C.
Enter your answers in Cartesian components. Assume the
masses of both beam AB and member CD are negligible.
cc 040
BY NC SA
2016 Eric Davishahl
W
A
C
D
-a-
B
Ул
-b-
x
Values for dimensions on the figure are given in the following
table. Note the figure may not be to scale.
Variable Value
α
5.4 m
b
8.64 m
C
3.24 m
The reaction at A is A =
i+
ĴN.
λ =
i+
Ĵ N.
The reaction at C is C =
56
Clamps like the one shown are commonly used in
woodworking applications. This clamp has the dimensions
given in the table below the figure, and its jaws are
mm thick (in the direction perpendicular to the plane of the
picture).
a.) The screws of the clamp are adjusted so that there is a
uniform pressure of P = 150 kPa being applied to the
workpieces by the jaws. Determine the force carried in each
screw. Hint: the uniform pressure can be modeled in 2-D as a
uniform distributed load with intensity w = Pt (units of
N/m) acting over the length of contact between the jaw and
the workpiece.
b.) Determine the minimum vertical force (parallel to the
jaws) required to pull either one of the workpieces out of the
clamp jaws. Use a coefficient of static friction between all
contacting surfaces of μs = 0.56 and the same clamping
pressure given for part (a).
2013 Michael Swanbom
A
B
C
a
Values for dimensions on the figure are given in the following
table. Note the figure may not be to scale.…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.