Cost function. A small manufacturing company produces two models of a surfboard: a standard model and a competition model. If the standard model is produced at a variable cost of $210 each and the competition model at a variable cost of $300 each, and if the total fixed costs per month are $6,000. then the monthly cost function is given by C ( x , y ) = 6 , 600 + 210 x + 300 y where x and y are the numbers of standard and competition models produced per month, respectively. Find C (20, 10), C (50, 5), and C (30, 30).
Cost function. A small manufacturing company produces two models of a surfboard: a standard model and a competition model. If the standard model is produced at a variable cost of $210 each and the competition model at a variable cost of $300 each, and if the total fixed costs per month are $6,000. then the monthly cost function is given by C ( x , y ) = 6 , 600 + 210 x + 300 y where x and y are the numbers of standard and competition models produced per month, respectively. Find C (20, 10), C (50, 5), and C (30, 30).
Solution Summary: The author calculates the monthly cost function C(x,y) that represents the cost of standard and competition surfboards (in dollars).
Cost function. A small manufacturing company produces two models of a surfboard: a standard model and a competition model. If the standard model is produced at a variable cost of $210 each and the competition model at a variable cost of $300 each, and if the total fixed costs per month are $6,000. then the monthly cost function is given by
C
(
x
,
y
)
=
6
,
600
+
210
x
+
300
y
where x and y are the numbers of standard and competition models produced per month, respectively. Find C(20, 10), C(50, 5), and C(30, 30).
موضوع الدرس
Prove that
Determine the following groups
Homz(QZ) Hom = (Q13,Z)
Homz(Q), Hom/z/nZ, Qt
for neN-
(2) Every factor group of
adivisible group is divisble.
• If R is a Skew ficald (aring with
identity and each non Zero element is
invertible then every R-module is free.
A: Tan Latitude / Tan P
A = Tan 04° 30'/ Tan 77° 50.3'
A= 0.016960 803 S CA named opposite to latitude,
except when hour angle between 090° and 270°)
B: Tan Declination | Sin P
B Tan 052° 42.1'/ Sin 77° 50.3'
B = 1.34 2905601 SCB is alway named same as
declination)
C = A + B = 1.35 9866404 S CC correction, A+/- B:
if A and B have same name - add, If
different name- subtract)
=
Tan Azimuth 1/Ccx cos Latitude)
Tan Azimuth = 0.737640253
Azimuth
=
S 36.4° E CAzimuth takes combined
name of C correction and Hour Angle - If LHA
is between 0° and 180°, it is named "west", if
LHA is between 180° and 360° it is named "east"
True Azimuth= 143.6°
Compass Azimuth = 145.0°
Compass Error = 1.4° West
Variation 4.0 East
Deviation: 5.4 West
A: Tan Latitude / Tan P
A = Tan 04° 30'/ Tan 77° 50.3'
A= 0.016960 803 S CA named opposite to latitude,
except when hour angle between 090° and 270°)
B: Tan Declination | Sin P
B Tan 052° 42.1'/ Sin 77° 50.3'
B = 1.34 2905601 SCB is alway named same as
declination)
C = A + B = 1.35 9866404 S CC correction, A+/- B:
if A and B have same name - add, If
different name- subtract)
=
Tan Azimuth 1/Ccx cos Latitude)
Tan Azimuth = 0.737640253
Azimuth
=
S 36.4° E CAzimuth takes combined
name of C correction and Hour Angle - If LHA
is between 0° and 180°, it is named "west", if
LHA is between 180° and 360° it is named "east"
True Azimuth= 143.6°
Compass Azimuth = 145.0°
Compass Error = 1.4° West
Variation 4.0 East
Deviation: 5.4 West
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY