An airplane traveling horizontally at 100 m/s over ?at ground at an elevation of 4000 meters must drop an emergency package on a target on the ground. The trajectory of the package is given by x = 100 t , y = − 4.9 t 2 + 4000 , t ≥ 0 where the origin is the point on the ground directly beneath the plane at the moment of release. How many horizontal meters before the target should the package be released in order to hit the target?
An airplane traveling horizontally at 100 m/s over ?at ground at an elevation of 4000 meters must drop an emergency package on a target on the ground. The trajectory of the package is given by x = 100 t , y = − 4.9 t 2 + 4000 , t ≥ 0 where the origin is the point on the ground directly beneath the plane at the moment of release. How many horizontal meters before the target should the package be released in order to hit the target?
An airplane traveling horizontally at 100 m/s over ?at ground at an elevation of 4000 meters must drop an emergency package on a target on the ground. The trajectory of the package is given by
x
=
100
t
,
y
=
−
4.9
t
2
+
4000
,
t
≥
0
where the origin is the point on the ground directly beneath the plane at the moment of release. How many horizontal meters before the target should the package be released in order to hit the target?
موضوع الدرس
Prove that
Determine the following groups
Homz(QZ) Hom = (Q13,Z)
Homz(Q), Hom/z/nZ, Qt
for neN-
(2) Every factor group of
adivisible group is divisble.
• If R is a Skew ficald (aring with
identity and each non Zero element is
invertible then every R-module is free.
A: Tan Latitude / Tan P
A = Tan 04° 30'/ Tan 77° 50.3'
A= 0.016960 803 S CA named opposite to latitude,
except when hour angle between 090° and 270°)
B: Tan Declination | Sin P
B Tan 052° 42.1'/ Sin 77° 50.3'
B = 1.34 2905601 SCB is alway named same as
declination)
C = A + B = 1.35 9866404 S CC correction, A+/- B:
if A and B have same name - add, If
different name- subtract)
=
Tan Azimuth 1/Ccx cos Latitude)
Tan Azimuth = 0.737640253
Azimuth
=
S 36.4° E CAzimuth takes combined
name of C correction and Hour Angle - If LHA
is between 0° and 180°, it is named "west", if
LHA is between 180° and 360° it is named "east"
True Azimuth= 143.6°
Compass Azimuth = 145.0°
Compass Error = 1.4° West
Variation 4.0 East
Deviation: 5.4 West
A: Tan Latitude / Tan P
A = Tan 04° 30'/ Tan 77° 50.3'
A= 0.016960 803 S CA named opposite to latitude,
except when hour angle between 090° and 270°)
B: Tan Declination | Sin P
B Tan 052° 42.1'/ Sin 77° 50.3'
B = 1.34 2905601 SCB is alway named same as
declination)
C = A + B = 1.35 9866404 S CC correction, A+/- B:
if A and B have same name - add, If
different name- subtract)
=
Tan Azimuth 1/Ccx cos Latitude)
Tan Azimuth = 0.737640253
Azimuth
=
S 36.4° E CAzimuth takes combined
name of C correction and Hour Angle - If LHA
is between 0° and 180°, it is named "west", if
LHA is between 180° and 360° it is named "east"
True Azimuth= 143.6°
Compass Azimuth = 145.0°
Compass Error = 1.4° West
Variation 4.0 East
Deviation: 5.4 West
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Interpreting Graphs of Quadratic Equations (GMAT/GRE/CAT/Bank PO/SSC CGL) | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=BHgewRcuoRM;License: Standard YouTube License, CC-BY
Solve a Trig Equation in Quadratic Form Using the Quadratic Formula (Cosine, 4 Solutions); Author: Mathispower4u;https://www.youtube.com/watch?v=N6jw_i74AVQ;License: Standard YouTube License, CC-BY