bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7.1, Problem 13P

Unifrom Distribution: Measurement Errors Measurement errors from instruments are often modeled using the uniform distribution (see Problem 12). To determine the range of a large public address system, acoustical engineers use a method of triangulation to measure the shock waves sent out by the speakers. The time at which the waves arrive at the sensors must be measured accurately. In this context, a negative error means the signal arrived too early. A positive error means the signal arrived too late. Measurement errors in reading these times have a uniform distribution from -0.05 to +0.05 microseconds (Reference J. Perruzzi and E. Hilliard, "Modeling Time Delay Measurement Errors." Journal of the Acoustical Societyof America, Vol. 75, No. 1, pp. 197-201). What is the probability that such measurements will be in error by

(a) less than +0.03 microsecond ( i .e . ,   0.05   x <   0.03 ) ? (b) more than -0.02 microsecond?

(c) between -0.04 and +0.01 microsecond?

(d) Find the mean and standard deviation of measurement errors. Measurements from an instrument are called unbiased if the mean of the measurement errors is zero. Would you say the measurements for these acoustical sensors are unbiased? Explain.

(a)

Expert Solution
Check Mark
To determine

To find: Theprobability thatsuch measurements will be in error byless than 0.03 microseconds.

Answer to Problem 13P

Solution: Theprobability that such measurements will be in error byless than 0.03 microsecondsis0.8.

Explanation of Solution

Calculation:

Let x be themeasurement errors in reading these times have a uniform distribution from α=0.05 to β=0.05 microseconds.

Let x is chosen at random from [α, β], the area of the rectangle that lies above [a, b] is the probability that x lies in [a, b]. This area is P(axb)=baβα

We have to find the probability of less than 0.03 microseconds,

P(0.05x0.03)=baβαP(0.05x0.03)=0.03(0.05)0.05(0.05)P(0.05x0.03)=0.8

Hence, P(0.05x0.03)=0.8.

(b)

Expert Solution
Check Mark
To determine

To find: Theprobability thatsuch measurements will be in error bymore than -0.02 microseconds.

Answer to Problem 13P

Solution: Theprobability that such measurements will be in error by more than -0.02 microsecondsis0.7.

Explanation of Solution

Calculation:

Let x be the measurement errors in reading these times have a uniform distribution from α=0.05 to β=0.05 microseconds.

Let x is chosen at random from [α, β], the area of the rectangle that lies above [a, b] is the probability that x lies in [a, b]. This area is P(axb)=baβα

We have to find the probability of more than -0.02 microseconds,

P(0.02x0.05)=baβαP(0.02x0.05)=0.05(0.02)0.05(0.05)P(0.02x0.05)=0.7

Hence, P(0.02x0.05)=0.7.

(c)

Expert Solution
Check Mark
To determine

To find: Theprobability thatsuch measurements will be in error bybetween -0.04 and 0.01 microseconds.

Answer to Problem 13P

Solution: Theprobability that such measurements will be in error bybetween -0.04 and 0.01 microsecondsis0.5.

Explanation of Solution

Calculation:

Let x be the measurement errors in reading these times have a uniform distribution from α=0.05 to β=0.05 microseconds.

Let x is chosen at random from [α, β], the area of the rectangle that lies above [a, b] is the probability that x lies in [a, b]. This area is P(axb)=baβα

We have to find the probability between -0.04 and 0.01 microseconds,

P(0.04x0.01)=baβαP(0.04x0.01)=0.01(0.04)0.05(0.05)P(0.04x0.01)=0.5

Hence, P(0.04x0.01)=0.5.

(d)

Expert Solution
Check Mark
To determine

To find: Themean and standard deviation of measurement errors and whether the measurements for these acoustical sensors are unbiased.

Answer to Problem 13P

Solution:

The mean of measurement errors is 0. The standard deviation of measurement errors is 0.029. Yes, the measurements for these acoustical sensors are unbiased.

Explanation of Solution

Calculation:

Let x be the measurement errors in reading these times have a uniform distribution from α=0.05 to β=0.05 microseconds.

We have to find the mean,

μ=α+β2μ=0.05+(0.05)2μ=0

Therefore, the mean is 0 microsecond.

We have to find the standard deviation,

σ=βα12σ=0.05(0.05)12σ0.029

Therefore, thestandard deviationis 0.029microsecond.

Yes, since the obtained mean of the measurement errors is zero so the measurements for these acoustical sensors are unbiased.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ES Chapter 09, Section 9.2, Problem 029a X Incorrect. Lazurus Steel Corporation produces iron rods that are supposed to be 36 inches long. The machine that makes these rods does not produce each rod exactly 36 inches long. The lengths of the rods are normally distributed and vary slightly. It is known that when the machine is working properly, the mean length of the rods is 36 inches. The standard deviation of the lengths of all rods produced on this machine is always equal to 0.035 inch. The quality control department at the company takes a sample of 20 such rods every week, calculates the mean length of these rods, and tests the null hypothesis, u = 36 inches, against the alternative hypothesis, u # 36 inches. If the null hypothesis is rejected, the machine is stopped and adjusted. A recent sample of 20 rods produced a mean length of 36.015 inches. Calculate the p-value for this test of hypothesis. Based on this p-value, will the quality control inspector decide to stop the machine…
ent FULL SCREEN PRINTER VERSION 1 BACK NEXT Chapter 09, Section 9.2, Problem 029a Lazurus Steel Corporation produces iron rods that are supposed to be 36 inches long. The machine that makes these rods does not produce each rod exactly 36 inches long. The lengths of the rods are normally distributed and vary slightly. It is known that when the machine is working properly, the mean length of the rods is 36 inches. The standard deviation of the lengths of all rods produced on this machine is always equal to 0.035 inch. The quality control department at the company takes a sample of 20 such rods every week, calculates the mean length of these rods, and tests the null hypothesis, µ = 36 inches, against the alternative hypothesis, µ # 36 inches. If the null hypothesis is rejected, the machine is stopped and adjusted. A recent sample of 20 rods produced a mean length of 36.015 inches. Calculate the p-value for this test of hypothesis. Based on this p-value, will the quality control inspector…
An example of the statistical treatment of an urban spot speed study is given below. Table 10.2 shows a set of 130 observations of spot speeds made by timing vehicles through a "trap" of 88 feet. In this example, the stopwatch data are grouped into 0.2 sec classes (a 1/5 sec stopwatch was used to obtain the data). The first column of the table shows the midpoint of each group. The second column shows the frequency of the observations. The cumulative percent shown in the third column is obtained by dividing each cumulative frequency (for example, 8 vehicles took 5 sec or longer to pass through the trap) by the total number of observations and multiplying by 100 (8 x 100/130 = 6.2 percent). The next two columns are computed to develop the average and variance of the space distribution. The sixth column indicates the speed of each time class and the last two columns are used to obtain the average speed and variance of the time distribution. Spot Speed Study Calculations (1) (2) Number…

Chapter 7 Solutions

Bundle: Understanding Basic Statistics, Loose-leaf Version, 7th + WebAssign Printed Access Card for Brase/Brase's Understanding Basic Statistics, ... for Peck's Statistics: Learning from Data

Ch. 7.1 - Pain Management: Laser Therapy Effect of...Ch. 7.1 - Expand Your knowledge: Continuous Uniform...Ch. 7.1 - Unifrom Distribution: Measurement Errors...Ch. 7.2 - Statistical Literacy What does a standard score...Ch. 7.2 - Statistical Literacy Does a raw score less than...Ch. 7.2 - Statistical Literacy What is the value of the...Ch. 7.2 - Statistical Literacy What are the values of the...Ch. 7.2 - Basic Computation: z Score and Raw Score A normal...Ch. 7.2 - Basic Computation: z Score and Raw Score A normal...Ch. 7.2 - Critical Thinking Consider the following scores:...Ch. 7.2 - Critical Thinking Raul received a score of 80 on a...Ch. 7.2 - z Scores: First Aid Course The college physical...Ch. 7.2 - z Scores: Fawns Fawns between 1 and 5 months old...Ch. 7.2 - Prob. 11PCh. 7.2 - Normal Curve: Tree Rings Tree-ring dates were used...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Prob. 22PCh. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Areas Under the...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.2 - Basic Computation: Finding Probabilities In...Ch. 7.3 - Statistical Literacy Consider a normal...Ch. 7.3 - Statistical Literacy Suppose 5% of the area under...Ch. 7.3 - Statistical Literacy Suppose 5% of the area under...Ch. 7.3 - Critical Thinking: Normality Consider the...Ch. 7.3 - Basic Computation: Find Probabilities In Problems...Ch. 7.3 - Basic Computation: Find Probabilities In Problems...Ch. 7.3 - Basic Computation: Find Probabilities In Problems...Ch. 7.3 - Basic Computation: Find Probabilities In Problems...Ch. 7.3 - Basic Computation: Find Probabilities In Problems...Ch. 7.3 - Basic Computation: Find Probabilities In Problems...Ch. 7.3 - Basic Computation: Find Probabilities In Problems...Ch. 7.3 - Basic Computation: Find Probabilities In Problems...Ch. 7.3 - Basic Computation: Find Probabilities In Problems...Ch. 7.3 - Basic Computation: Find Probabilities In Problems...Ch. 7.3 - Basic Computation: Find zValues In Problems 15-24,...Ch. 7.3 - Basic Computation: Find zValues In Problems 15-24,...Ch. 7.3 - Basic Computation: Find zValues In Problems 15-24,...Ch. 7.3 - Basic Computation: Find zValues In Problems 15-24,...Ch. 7.3 - Basic Computation: Find zValues In Problems 15-24,...Ch. 7.3 - Basic Computation: Find zValues In Problems 15-24,...Ch. 7.3 - Basic Computation: Find zValues In Problems 15-24,...Ch. 7.3 - Basic Computation: Find zValues In Problems 15-24,...Ch. 7.3 - Basic Computation: Find zValues In Problems 15-24,...Ch. 7.3 - Basic Computation: Find zValues In Problems 15-24,...Ch. 7.3 - Medical: Blood Glucose A person's blood glucose...Ch. 7.3 - Medical: Blood Protoplasm Porphyrin is a pigment...Ch. 7.3 - 27 Archaeology: Hopi Village Thickness...Ch. 7.3 - Law Enforcement: Police Response Time Police...Ch. 7.3 - Guarantee: Batteries Quick Start Company makes...Ch. 7.3 - Guarantee: Watches Accrotime is a manufacturer of...Ch. 7.3 - Expand Your Knowledge: Estimating the Standard...Ch. 7.3 - Estimating the Standard Deviation: Refrigerator...Ch. 7.3 - Estimating the Standard Deviation: Veterinary...Ch. 7.3 - Estimating the Standard Deviation: Veterinary...Ch. 7.3 - Insurance: Satellites A relay microchip in a...Ch. 7.4 - Statistical Literacy What is a population? Give...Ch. 7.4 - Statistical Literac y What is a random sample from...Ch. 7.4 - Statistical Literacy What is a population...Ch. 7.4 - Statistical Literacy What is a sample statistic?...Ch. 7.4 - Statistical Literacy What is the meaning of the...Ch. 7.4 - Statistical Literacy What is a sampling...Ch. 7.4 - Critical Thinking How do frequency tables,...Ch. 7.4 - Critical Thinking How can relative frequencies be...Ch. 7.4 - Critical Thinking Give an example of a specific...Ch. 7.5 - Statistical Literacy What is the standard error of...Ch. 7.5 - Statistical Literacy What is the standard...Ch. 7.5 - Statistical Literacy List two unbiased estimators...Ch. 7.5 - Statistical Literacy Describe how the variability...Ch. 7.5 - Basic Computation: Central Limit Theorem Suppose x...Ch. 7.5 - Basic Computation: Central Limit Theorem Suppose x...Ch. 7.5 - Prob. 7PCh. 7.5 - Critical Thinking Suppose x has a distribution...Ch. 7.5 - Critical Thinking Consider two x distributions...Ch. 7.5 - Critical Thinking Consider an x distribution with...Ch. 7.5 - Critical Thinking Suppose x has a distribution...Ch. 7.5 - Critical Thinking Suppose an x distribution has...Ch. 7.5 - Coal: Automatic Loader Coal is carried from a mine...Ch. 7.5 - Vital Statistics: Heights of Men The heights of...Ch. 7.5 - Medical: Blood Glucose Let x be a random variable...Ch. 7.5 - Medical: White Blood Cells Let x be a random...Ch. 7.5 - Wildlife: Deer Let x be a random variable that...Ch. 7.5 - Focus Problem: Impulse Buying Let x represent the...Ch. 7.5 - Finance: Templeton Funds Templeton world is a...Ch. 7.5 - Finance: European Growth Fund A European growth...Ch. 7.6 - Statistical Literacy Binomial probability...Ch. 7.6 - Statistical Literacy When we use a normal...Ch. 7.6 - Basic Computation: Normal Approximation to a...Ch. 7.6 - Basic Computation: Normal Approximation to a...Ch. 7.6 - Critical Thinking You need to compute the...Ch. 7.6 - Critical Thinking Consider a binomial experiment...Ch. 7.6 - In the following problems, check that it is...Ch. 7.6 - Insurance: Claims Do you try to pad an insurance...Ch. 7.6 - Longevity: 90th Birthday It is estimated that 3.5%...Ch. 7.6 - Fishing: Billfish Ocean fishing for billfish is...Ch. 7.6 - Grocery Stores: New ProductsThe Denver Post slated...Ch. 7.6 - Crime: Murder What are the chances that a person...Ch. 7.6 - Supermarkets: Free Samples Do you take the free...Ch. 7.6 - Ice Cream: Flavors Whats your favorite ice cream...Ch. 7.6 - Airline Flights: No-Shows Based on long...Ch. 7.6 - 16. General: Approximations We have studied the...Ch. 7.6 - Statistical Literacy Under what conditions is it...Ch. 7.6 - Statistical Literacy What is the formula for the...Ch. 7.6 - Statistical Literacy Is p an unbiased estimator...Ch. 7.6 - Basic Computation: p Distribution Suppose we have...Ch. 7.6 - Basic Computation: p Distribution Suppose we have...Ch. 7 - Statistical Literacy Describe a normal probability...Ch. 7 - Statistical Literacy According to the empirical...Ch. 7 - Statistical Literacy Random sample of size 9 is...Ch. 7 - Statistical Literacy Can a normal distribution...Ch. 7 - Statistical Literacy What characteristic of a...Ch. 7 - Statistical Liter acy For a normal distribution,...Ch. 7 - Statistical Literacy Give the formula for the...Ch. 7 - Statistical Literacy Give the formula for the...Ch. 7 - Critical Thinking Let x be a random variable...Ch. 7 - Critical Thinking If x has a normal distribution...Ch. 7 - Basic Computation: Probability Given that x is a...Ch. 7 - Basic Computation: Probability Given that x is a...Ch. 7 - Basic Computation: Inverse Normal Find z such that...Ch. 7 - Basic Computation: Inverse Normal Find z such that...Ch. 7 - Medical: Blood Type Blood type AB is found in only...Ch. 7 - Customer Complaints: Time The Customer Service...Ch. 7 - 21. Recycling: Aluminum Cans One environmental...Ch. 7 - Prob. 18CRCh. 7 - Guarantee: Package Delivery Express Courier...Ch. 7 - Drugs: Effects A new muscle relaxant is available....Ch. 7 - Psychology: IQ Scores Assume that IQ scores are...Ch. 7 - Hatchery Fish: Length A large tank of fish from a...Ch. 7 - Basic Computation: p Distribution Suppose we have...Ch. 7 - Green Behavior: Purchasing Habits A recent Harris...Ch. 7 - Iris setosa is a beautiful wildflower that is...Ch. 7 - If you look up the word empirical in a dictionary,...Ch. 7 - Why are standard z values so important? Is it true...Ch. 7 - Most people would agree that increased information...Ch. 7 - In a way, the central limit theorem can be thought...
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License