Fundamentals Of Physics
11th Edition
ISBN: 9781119286240
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 9P
The only force acting on a 2.0 kg canister that is moving in an xy plane has a magnitude of 5.0 N. The canister initially has a velocity of 4.0 m/s in the positive x direction and some time later has a velocity of 6.0 m/s in the positive y direction. How much work is done on the canister by the 5.0 N force during this time?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls
No chatgpt pls
Please help by:
Use a free body diagram
Show the equations
State your assumptions
Show your steps
Box your final answer
Thanks!
Chapter 7 Solutions
Fundamentals Of Physics
Ch. 7 - Rank the following velocities according to the...Ch. 7 - Figure 7-16a shows two horizontal forces that act...Ch. 7 - Is positive or negative work done by a constant...Ch. 7 - In three situations, a briefly applied horizontal...Ch. 7 - The graphs in Fig. 7-18 give the x component Fx of...Ch. 7 - Figure 7-19 gives the x component Fx of a force...Ch. 7 - In Fig. 7-20, a greased pig has a choice of three...Ch. 7 - Figure 7-21a shows four situations in which a...Ch. 7 - Spring A is stiffer than spring B kA kB. The...Ch. 7 - A glob of slime is launched or dropped from the...
Ch. 7 - In three situations, a single force acts on a...Ch. 7 - Figure 7-23 shows three arrangements of a block...Ch. 7 - SSM A proton mass m = 1.67 1027 kg is being...Ch. 7 - If a Saturn V rocket with an Apollo spacecraft...Ch. 7 - On August 10, 1972, a large meteorite skipped...Ch. 7 - An explosion at ground level leaves a crater with...Ch. 7 - A father racing his son has half the kinetic...Ch. 7 - A bead with mass 1.8 10-2 kg is moving along a...Ch. 7 - A 3.0 kg body is at rest on a frictionless...Ch. 7 - Prob. 8PCh. 7 - The only force acting on a 2.0 kg canister that is...Ch. 7 - A coin slides over a frictionless plane and across...Ch. 7 - A 12.0 N force with a fixed orientation does work...Ch. 7 - A can of bolts and nuts is pushed 2.00 m along an...Ch. 7 - A luge and its rider, with a total mass of 85 kg,...Ch. 7 - 14 GO Figure 7-27 shows an overhead view of three...Ch. 7 - GO Figure 7-28 shows three forces applied to a...Ch. 7 - GO An 8.0 kg object is moving in the positive...Ch. 7 - SSM WWW A helicopter lifts a 72 kg astronaut 15 m...Ch. 7 - a In 1975 the roof of Montreals Velodrome, witha...Ch. 7 - GO In Fig. 7-30, a block of ice slides down a...Ch. 7 - A block is sent up a frictionless ramp along which...Ch. 7 - 21 SSM A cord is used to vertically lower an...Ch. 7 - A cave rescue team lifts an injured spelunker...Ch. 7 - In Fig. 7-32, a constant force Fa of magnitude...Ch. 7 - GO In Fig. 7-33, a horizontal force Fa of...Ch. 7 - GO In Fig. 7-34, a 0.250 kg block of cheese lies...Ch. 7 - In Fig. 7-10, we must apply a force of magnitude...Ch. 7 - A spring and block are in the arrangement of Fig....Ch. 7 - During spring semester at MIT, residents of the...Ch. 7 - In the arrangement of Fig. 7-10, we gradually pull...Ch. 7 - In Fig. 7-10a, a block of mass m lies on a...Ch. 7 - SSM WWW The only force acting on a 2.0 kg body as...Ch. 7 - Figure 7-37 gives spring force Fx versus position...Ch. 7 - GO The block in Fig. 7-10a lies on a horizontal...Ch. 7 - ILW A 10 kg brick moves along an xaxis. Its...Ch. 7 - SSM WWW The force on a particle is directed along...Ch. 7 - GO A 5.0 kg block moves in a straight line on a...Ch. 7 - GO Figure 7-40 gives the acceleration of a 2.00 kg...Ch. 7 - A 1.5 kg block is initially at rest on a...Ch. 7 - GO A force F= cx3.00x2iacts on a particle as the...Ch. 7 - A can of sardines is made to move along an xaxis...Ch. 7 - A single force acts on a 3.0 kg particle-like...Ch. 7 - GO Figure 7-41 shows a cord attached to a cart...Ch. 7 - SSM A force of 5.0 N acts on a 15 kg body...Ch. 7 - A skier is pulled by a towrope up a frictionless...Ch. 7 - SSM ILW A 100 kg block is pulled at a constant...Ch. 7 - The loaded cab of an elevator has a mass of 3.0 ...Ch. 7 - A machine carries a 4.0 kg package from an initial...Ch. 7 - A 0.30 kg ladle sliding on a horizontal...Ch. 7 - Prob. 49PCh. 7 - a At a certain instant, a particle-like object is...Ch. 7 - A force F= 3.00 N i 7.00 N j 7.00 N k acts on...Ch. 7 - A funny car accelerates from rest through a...Ch. 7 - Figure 7-42 shows a cold package of hot dogs...Ch. 7 - GO The only force acting on a 2.0 kg body as the...Ch. 7 - SSM A horse pulls a cart with a force of 40 lb at...Ch. 7 - An initially stationary 2.0 kg object accelerates...Ch. 7 - A 230 kg crate hangs from the end of a rope of...Ch. 7 - To pull a 50 kg crate across a horizontal...Ch. 7 - A force Fa is applied to a bead as the bead is...Ch. 7 - A frightened child is restrained by her mother as...Ch. 7 - How much work is done by a force F= 2x N i 3 N j,...Ch. 7 - A 250 g block is dropped onto a relaxed vertical...Ch. 7 - 63 SSM To push a 25.0 kg crate up a frictionless...Ch. 7 - Boxes are transported from one location to another...Ch. 7 - In Fig. 7-47, a cord runs around two massless,...Ch. 7 - If a car of mass 1200 kg is moving along a highway...Ch. 7 - SSM A spring with a pointer attached is hanging...Ch. 7 - An iceboat is at rest on a frictionless frozen...Ch. 7 - If a ski lift raises 100 passengers averaging 660...Ch. 7 - A force F= 4.0 N i cj acts on a particle as the...Ch. 7 - A constant force of magnitude 10 N makes an angle...Ch. 7 - In Fig. 7-49a, a 2.0 N force is applied to a 4.0...Ch. 7 - A force F in the positive direction of an x axis...Ch. 7 - A particle moves along a straight path through...Ch. 7 - SSM What is the power of the force required to...Ch. 7 - A 45 kg block of ice slides down a frictionless...Ch. 7 - As a particle moves along an x axis, a force in...Ch. 7 - A CD case slides along a floor in the positive...Ch. 7 - SSM A 2.0 kg lunchbox is sent sliding over a...Ch. 7 - Numerical integration. A breadbox is made to move...Ch. 7 - In the block-spring arrangement of Fig. 7-10, the...Ch. 7 - A 4.00 kg block is pulled up a frictionless...Ch. 7 - A spring with a spring constant of 18.0 N/cm has a...Ch. 7 - Prob. 84PCh. 7 - At t = 0, force F= 5.00 i 5.00 j 4.00 k N begins...
Additional Science Textbook Solutions
Find more solutions based on key concepts
5.The precise mechanism of ammonia toxicity to the brain is not known. Speculate on a possible mechanism, based...
Biochemistry: Concepts and Connections (2nd Edition)
56. Global Positioning System. Learn more about the global positioning system and its uses. Write a short repo...
The Cosmic Perspective (8th Edition)
What are the four types of tissues, and what are their characteristics?
Human Anatomy & Physiology (2nd Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Give the specific volume of carbon dioxide at 40C for 800kPa and for 1400kPa .
Fundamentals Of Thermodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please help by: Use a free body diagram Show the equations State your assumptions Show your steps Box your final answer Thanks!arrow_forwardBy please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forward
- A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardFor each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forwardFour point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…arrow_forward
- Point charges q1=50.0μC and q2=-35μC are placed d1=1.0m apart, as shown. A. A third charge, q3=25μC, is positioned somewhere along the line that passes through the first two charges, and the net force on q3 is zero. Which statement best describes the position of this third charge?1) Charge q3 is to the right of charge q2. 2) Charge q3 is between charges q1 and q2. 3) Charge q3 is to the left of charge q1. B. What is the distance, in meters, between charges q1 and q3? (Your response to the previous step may be used to simplify your solution.)Give numeric value.d2 = __________________________________________mC. Select option that correctly describes the change in the net force on charge q3 if the magnitude of its charge is increased.1) The magnitude of the net force on charge q3 would still be zero. 2) The effect depends upon the numeric value of charge q3. 3) The net force on charge q3 would be towards q2. 4) The net force on charge q3 would be towards q1. D. Select option that…arrow_forwardThe magnitude of the force between a pair of point charges is proportional to the product of the magnitudes of their charges and inversely proportional to the square of their separation distance. Four distinct charge-pair arrangements are presented. All charges are multiples of a common positive charge, q. All charge separations are multiples of a common length, L. Rank the four arrangements from smallest to greatest magnitude of the electric force.arrow_forwardA number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q (upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forward
- A collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forwardIn Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forwardA conducting sphere is mounted on an insulating stand, and initially it is electrically neutral. A student wishes to induce a charge distribution similar to what is shown here. The student may connect the sphere to ground or leave it electrically isolated. The student may also place a charged insulated rod near to the sphere without touching it. Q. The diagrams below indicate different choices for whether or not to include a ground connection as well as the sign of the charge on and the placement of an insulating rod. Choose a diagram that would produce the desired charge distribution. (If there are multiple correct answers, you need to select only one of them.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY