Fundamentals Of Physics
11th Edition
ISBN: 9781119286240
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 8P
To determine
To Find:
The work done on the block during the displacement
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Given water's mass of 18g/mole and the value of the fundamental charge (charge magnitude of the electron and proton), use the largest charge density from the article to determine what fraction of water molecules became ionized (charged) due to triboelectric effects when it flows through the material that causes the largest charge transfer. Give your answer in e/molecule, or electrons transferred per molecule of water. For instance, a value of 0.2 means only one in five molecules of water loses an electron, or that 0.2=20% of water molecules become charged
no AI, please
Sketch the resulting complex wave form, and then say whether it is a periodic or aperiodic wave.
Chapter 7 Solutions
Fundamentals Of Physics
Ch. 7 - Rank the following velocities according to the...Ch. 7 - Figure 7-16a shows two horizontal forces that act...Ch. 7 - Is positive or negative work done by a constant...Ch. 7 - In three situations, a briefly applied horizontal...Ch. 7 - The graphs in Fig. 7-18 give the x component Fx of...Ch. 7 - Figure 7-19 gives the x component Fx of a force...Ch. 7 - In Fig. 7-20, a greased pig has a choice of three...Ch. 7 - Figure 7-21a shows four situations in which a...Ch. 7 - Spring A is stiffer than spring B kA kB. The...Ch. 7 - A glob of slime is launched or dropped from the...
Ch. 7 - In three situations, a single force acts on a...Ch. 7 - Figure 7-23 shows three arrangements of a block...Ch. 7 - SSM A proton mass m = 1.67 1027 kg is being...Ch. 7 - If a Saturn V rocket with an Apollo spacecraft...Ch. 7 - On August 10, 1972, a large meteorite skipped...Ch. 7 - An explosion at ground level leaves a crater with...Ch. 7 - A father racing his son has half the kinetic...Ch. 7 - A bead with mass 1.8 10-2 kg is moving along a...Ch. 7 - A 3.0 kg body is at rest on a frictionless...Ch. 7 - Prob. 8PCh. 7 - The only force acting on a 2.0 kg canister that is...Ch. 7 - A coin slides over a frictionless plane and across...Ch. 7 - A 12.0 N force with a fixed orientation does work...Ch. 7 - A can of bolts and nuts is pushed 2.00 m along an...Ch. 7 - A luge and its rider, with a total mass of 85 kg,...Ch. 7 - 14 GO Figure 7-27 shows an overhead view of three...Ch. 7 - GO Figure 7-28 shows three forces applied to a...Ch. 7 - GO An 8.0 kg object is moving in the positive...Ch. 7 - SSM WWW A helicopter lifts a 72 kg astronaut 15 m...Ch. 7 - a In 1975 the roof of Montreals Velodrome, witha...Ch. 7 - GO In Fig. 7-30, a block of ice slides down a...Ch. 7 - A block is sent up a frictionless ramp along which...Ch. 7 - 21 SSM A cord is used to vertically lower an...Ch. 7 - A cave rescue team lifts an injured spelunker...Ch. 7 - In Fig. 7-32, a constant force Fa of magnitude...Ch. 7 - GO In Fig. 7-33, a horizontal force Fa of...Ch. 7 - GO In Fig. 7-34, a 0.250 kg block of cheese lies...Ch. 7 - In Fig. 7-10, we must apply a force of magnitude...Ch. 7 - A spring and block are in the arrangement of Fig....Ch. 7 - During spring semester at MIT, residents of the...Ch. 7 - In the arrangement of Fig. 7-10, we gradually pull...Ch. 7 - In Fig. 7-10a, a block of mass m lies on a...Ch. 7 - SSM WWW The only force acting on a 2.0 kg body as...Ch. 7 - Figure 7-37 gives spring force Fx versus position...Ch. 7 - GO The block in Fig. 7-10a lies on a horizontal...Ch. 7 - ILW A 10 kg brick moves along an xaxis. Its...Ch. 7 - SSM WWW The force on a particle is directed along...Ch. 7 - GO A 5.0 kg block moves in a straight line on a...Ch. 7 - GO Figure 7-40 gives the acceleration of a 2.00 kg...Ch. 7 - A 1.5 kg block is initially at rest on a...Ch. 7 - GO A force F= cx3.00x2iacts on a particle as the...Ch. 7 - A can of sardines is made to move along an xaxis...Ch. 7 - A single force acts on a 3.0 kg particle-like...Ch. 7 - GO Figure 7-41 shows a cord attached to a cart...Ch. 7 - SSM A force of 5.0 N acts on a 15 kg body...Ch. 7 - A skier is pulled by a towrope up a frictionless...Ch. 7 - SSM ILW A 100 kg block is pulled at a constant...Ch. 7 - The loaded cab of an elevator has a mass of 3.0 ...Ch. 7 - A machine carries a 4.0 kg package from an initial...Ch. 7 - A 0.30 kg ladle sliding on a horizontal...Ch. 7 - Prob. 49PCh. 7 - a At a certain instant, a particle-like object is...Ch. 7 - A force F= 3.00 N i 7.00 N j 7.00 N k acts on...Ch. 7 - A funny car accelerates from rest through a...Ch. 7 - Figure 7-42 shows a cold package of hot dogs...Ch. 7 - GO The only force acting on a 2.0 kg body as the...Ch. 7 - SSM A horse pulls a cart with a force of 40 lb at...Ch. 7 - An initially stationary 2.0 kg object accelerates...Ch. 7 - A 230 kg crate hangs from the end of a rope of...Ch. 7 - To pull a 50 kg crate across a horizontal...Ch. 7 - A force Fa is applied to a bead as the bead is...Ch. 7 - A frightened child is restrained by her mother as...Ch. 7 - How much work is done by a force F= 2x N i 3 N j,...Ch. 7 - A 250 g block is dropped onto a relaxed vertical...Ch. 7 - 63 SSM To push a 25.0 kg crate up a frictionless...Ch. 7 - Boxes are transported from one location to another...Ch. 7 - In Fig. 7-47, a cord runs around two massless,...Ch. 7 - If a car of mass 1200 kg is moving along a highway...Ch. 7 - SSM A spring with a pointer attached is hanging...Ch. 7 - An iceboat is at rest on a frictionless frozen...Ch. 7 - If a ski lift raises 100 passengers averaging 660...Ch. 7 - A force F= 4.0 N i cj acts on a particle as the...Ch. 7 - A constant force of magnitude 10 N makes an angle...Ch. 7 - In Fig. 7-49a, a 2.0 N force is applied to a 4.0...Ch. 7 - A force F in the positive direction of an x axis...Ch. 7 - A particle moves along a straight path through...Ch. 7 - SSM What is the power of the force required to...Ch. 7 - A 45 kg block of ice slides down a frictionless...Ch. 7 - As a particle moves along an x axis, a force in...Ch. 7 - A CD case slides along a floor in the positive...Ch. 7 - SSM A 2.0 kg lunchbox is sent sliding over a...Ch. 7 - Numerical integration. A breadbox is made to move...Ch. 7 - In the block-spring arrangement of Fig. 7-10, the...Ch. 7 - A 4.00 kg block is pulled up a frictionless...Ch. 7 - A spring with a spring constant of 18.0 N/cm has a...Ch. 7 - Prob. 84PCh. 7 - At t = 0, force F= 5.00 i 5.00 j 4.00 k N begins...
Knowledge Booster
Similar questions
- During a concentric loading of the quadriceps muscle in the upper leg, an athlete extends his lower leg from a vertical position (see figure (a)) to a fully extended horizontal position (see figure (b)) at a constant angular speed of 45.0° per second. Two of the four quadriceps muscles, the vastis intermedius and the rectus femoris, terminate at the patellar tendon which is attached to the top of the tibia in the lower leg. The distance from the point of attachment of the patellar tendon to the rotation axis of the tibia relative to the femur is 4.10 cm in this athlete. a b (a) The two quadriceps muscles can exert a maximum force of 225 N through the patellar tendon. This force is applied at an angle of 25.0° to the section of the tibia between the attachment point and the rotation axis. What is the torque (in N⚫ m) exerted by the muscle on the lower leg during this motion? (Enter the magnitude.) N⚫ m (b) What is the power (in W) generated by the athlete during the motion? W (c)…arrow_forward= A hanging weight, with a mass of m₁ = 0.365 kg, is attached by a rope to a block with mass m₂ 0.835 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R₁ = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As the weight falls, the block slides on the table, and the coefficient of kinetic friction between the block and the table is μk = 0.250. At the instant shown, the block is moving with a velocity of v; = 0.820 m/s toward the pulley. Assume that the pulley is free to spin without friction, that the rope does not stretch and does not slip on the pulley, and that the mass of the rope is negligible. mq R₂ R₁ mi (a) Using energy methods, find the speed of the block (in m/s) after it has moved a distance of 0.700 m away from the initial position shown. m/s (b) What is the angular speed of the pulley (in rad/s) after the block has moved this…arrow_forwardno AI, pleasearrow_forward
- no AI, pleasearrow_forwardno AI, pleasearrow_forwardTwo astronauts, each having a mass of 95.5 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 4.60 m/s. Treating the astronauts as particles, calculate each of the following. CG × d (a) the magnitude of the angular momentum of the system kg m2/s (b) the rotational energy of the system KJ By pulling on the rope, the astronauts shorten the distance between them to 5.00 m. (c) What is the new angular momentum of the system? kg m2/s (d) What are their new speeds? m/s (e) What is the new rotational energy of the system? KJ (f) How much work is done by the astronauts in shortening the rope? KJarrow_forward
- A uniform horizontal disk of radius 5.50 m turns without friction at w = 2.55 rev/s on a vertical axis through its center, as in the figure below. A feedback mechanism senses the angular speed of the disk, and a drive motor at A ensures that the angular speed remain constant while a m = 1.20 kg block on top of the disk slides outward in a radial slot. The block starts at the center of the disk at time t = 0 and moves outward with constant speed v = 1.25 cm/s relative to the disk until it reaches the edge at t = 360 s. The sliding block experiences no friction. Its motion is constrained to have constant radial speed by a brake at B, producing tension in a light string tied to the block. (a) Find the torque as a function of time that the drive motor must provide while the block is sliding. Hint: The torque is given by t = 2mrvw. t N.m (b) Find the value of this torque at t = 360 s, just before the sliding block finishes its motion. N.m (c) Find the power which the drive motor must…arrow_forward(a) A planet is in an elliptical orbit around a distant star. At its closest approach, the planet is 0.670 AU from the star and has a speed of 54.0 km/s. When the planet is at its farthest distance from the star of 36.0 AU, what is its speed (in km/s)? (1 AU is the average distance from the Earth to the Sun and is equal to 1.496 × 1011 m. You may assume that other planets and smaller objects in the star system exert negligible forces on the planet.) km/s (b) What If? A comet is in a highly elliptical orbit around the same star. The comet's greatest distance from the star is 25,700 times larger than its closest distance to the star. The comet's speed at its greatest distance is 2.40 x 10-2 km/s. What is the speed (in km/s) of the comet at its closest approach? km/sarrow_forwardYou are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a new game of skill. A thin rod of mass M = 0.505 kg and length = 2.70 m hangs from a friction-free pivot at its upper end as shown in the figure. Pivot Velcro M Incoming Velcro-covered ball m The front surface of the rod is covered with Velcro. You are to throw a Velcro-covered ball of mass m = 1.25 kg at the rod in an attempt to make it swing backward and rotate all the way across the top. The ball must stick to the rod at all times after striking it. If you cause the rod to rotate over the top position (that is, rotate 180° opposite of its starting position), you win a stuffed animal. Your friend volunteers to try his luck. He feels that the most torque would be applied to the rod by striking it at its lowest end. While he prepares to aim at the lowest point on the rod, you calculate how fast he must throw the ball to win the stuffed animal with this…arrow_forward
- 56 is not the correct answer!arrow_forward81 SSM Figure 29-84 shows a cross section of an infinite conducting sheet carrying a current per unit x-length of 2; the current emerges perpendicularly out of the page. (a) Use the Biot-Savart law and symmetry to show that for all points B •P x B P'. Figure 29-84 Problem 81. P above the sheet and all points P' below it, the magnetic field B is parallel to the sheet and directed as shown. (b) Use Ampere's law to prove that B = ½µλ at all points P and P'.arrow_forward(λvacuum =640nm) red light (λ vacuum = 640 nm) and green light perpendicularly on a soap film (n=1.31) A mixture of (a vacuum = 512 nm) shines that has air on both side. What is the minimum nonzero thickness of the film, so that destructive interference to look red in reflected light? nm Causes itarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON