Concept explainers
Teams red blue are having a tug-of-war. According to
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
Chapter 7 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Additional Science Textbook Solutions
Biological Science (6th Edition)
Biology: Life on Earth (11th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Applications and Investigations in Earth Science (9th Edition)
Campbell Essential Biology (7th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- Does the ground need to exert a force on you for you to jump off the ground, or do you need to exert a force on the ground? If the ground must exert a force on you, is that force greater than the force you exert on the ground?arrow_forwardA block of mass m1= 10 kg is on a frictionless table to the left of a second block of mass m2 = 24 kg, attached by a horizontal string (Figure WU4.13). If a horizontal force of 120 N is exerted on the block m2in the positive x-direction, (a) use the system approach to find the acceleration of the two blocks. (b) What is the tension in the string connecting the blocks? (See Section 4.6.) Figure WU4.13arrow_forwardTwo objects, m1 = 3.00 kg and m2 = 8.50 kg, are attached by a massless cord passing over a frictionless pulley as shown in Figure P5.51. Assume the horizontal surface is frictionless. a. Draw a free-body diagram for each of the two objects. b. What is the tension in the cord? c. What is the magnitude of the acceleration of the two objects? FIGURE P5.51 Problems 51 and 65.arrow_forward
- What horizontal force must be applied to a large block of mass M shown in Figure P5.49 so that the tan blocks remain stationary relative to M? Assume all surfaces and the pulley are frictionless. Notice that the force exerted by the string accelerates m2. Figure P5.49 Problems 49 and 53arrow_forwardA ball is falling toward the ground. Which of the following statements are false? (a) The force that the ball exerts on Earth is equal in magnitude to the force that Earth exerts on the ball, (b) The ball undergoes the same acceleration as Earth. (c) The magnitude of the force the Earth exerts on the ball is greater than the magnitude of the force the ball exerts on the Earth.arrow_forwardAn object of mass m1 = 5.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m2 = 9.00 kg as shown in Figure P5.22. (a) Draw free-body diagrams of both objects. Find (b) the magnitude of the acceleration of the objects and (c) the tension in the string. Figure P5.22 Problems 22 and 29.arrow_forward
- An object of mass m is dropped al t = 0 from the roof of a building of height h. While the object is falling, a wind blowing parallel to the face of the building exerts a constant horizontal force F on the object. (a) At what time t does the object strike the ground? Express t in terms of g and h. (b) Find an expression in terms of m and F for the acceleration ax of the object in the horizontal direction (taken as the positive x direction). (c) How far is the object displaced horizontally before hitting the ground? Answer in terms of m, g, F, and h. (d) Find the magnitude of the objects acceleration while it is falling, using the variables F, m, and g.arrow_forwardTwo children, Raffi and John, sitting on sleds tied together with a massless rope, are being dragged across a frozen river by their playful Siberian husky Rex who is supplying a 112-N horizontal force (Fig. P5.78). The coefficient of friction between the sleds and the ice is 0.08, the combined mass of Raffi and his sled is 42.0 kg, and the combined mass of John and his sled is 51.0 kg. a. Draw a free-body diagram for each of the childsled systems. b. What is the acceleration of the system? c. What is the tension FT in the rope connecting the two sleds? FIGURE P5.78arrow_forwardGive reasons for the answers to each of the following questions: (a) Clan a normal force be horizontal? (b) Can a normal force be directed vertically downward? (c) Consider a tennis ball in contact with a stationary floor and with nothing else. Can the normal force be different in magnitude from the gravitational force exerted on the ball? (d) Can the force exerted by the floor on the hall be different in magnitude from the force the ball exerts on the floor?arrow_forward
- In Example 4.5, we pushed on two blocks on a table. Suppose three blocks are in contact with one another on a frictionless, horizontal surface as shown in Figure P4.49. A horizontal force F is applied to m1. Take m1 = 2.00 kg, m2 = 3.00 kg, m3 = 4.00 kg, and F = 18.0 N. (a) Draw a separate free-body diagram for each block. (b) Determine the acceleration of the blocks. (c) Find the resultant force on each block. (d) Find the magnitudes of the contact forces between the blocks. (e) You are working on a construction project. A coworker is nailing up plasterboard on one side of a light partition, and you are on the opposite side, providing backing by leaning against the wall with your back pushing on it. Every hammer blow makes your back sting. The supervisor helps you put a heavy block of wood between the wall and your back. Using the situation analyzed in parts (a) through (d) as a model, explain how this change works to make your job more comfortable. Figure P4.49arrow_forwardA 1 00-kg car is pulling a 300-kg trailer. Together, the car and trailer move forward with an acceleration of 2.15 m/s2. Ignore any force of air drag on the car and all friction forces on the trailer. Determine (a) the net force on the car, (b) the net force on the trailer, (c) the force exerted by the trailer on the car, and (d) the resultant force exerted by the car on the road.arrow_forwardIn Figure P4.35, the man and the platform together weigh 950 N. The pulley can be modeled as frictionless. Determine how hard the man has to pull on the rope to lift himself steadily upward above the ground. (Or is it impossible? If so, explain why.) Figure P4.35arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning